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ABSTRACT

From Qualitative to Quantitative: Supporting Robot Understanding in
Human-Interactive Path Planning

Daqing Yi
Department of Computer Science, BYU

Doctor of Philosophy

Improvements in robot autonomy are changing human-robot interaction from low-level
manipulation to high-level task-based collaboration. When a robot can independently and
autonomously executes tasks, a human in a human-robot team acts as a collaborator or task
supervisor instead of a tele-operator. When applying this to planning paths for a robot’s
motion, it is very important that the supervisor’s qualitative intent is translated into a
quantitative model so that the robot can produce a desirable consequence.

In robotic path planning, algorithms can transform a human’s qualitative requirement
into a robot’s quantitative model so that the robot behavior satisfies the human’s intent.
In particular, algorithms can be created that allow a human to express multi-objective and
topological preferences, and can be built to use verbal communication.

This dissertation presents a series of robot motion-planning algorithms, each of
which is designed to support some aspect of a human’s intent. Specifically, we present
algorithms for the following problems: planning with a human-motion constraint, planning
with a topological requirement, planning with multiple objectives, and creating models of
constraints, requirements, and objectives from verbal instructions. These algorithms create
a set of robot behaviors that support flexible decision-making over a range of complex
path-planning tasks.

Keywords: Path Planning, Human-Robot Interaction, Language Understanding
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Chapter 1

Background, Motivation, and Overview

1.1 Introduction

This chapter presents a logical view of the chapters of the dissertation. It gives an overview of

the problem that translates from qualitative information to quantitative solutions. The

problem-solving consists of language understanding, multi-objective path-planning and

topology-based path-planning. This chapter explains how these components in the dis-

sertation are connected and how they relate to the chapters of this dissertation.

1.1.1 Robotic Path Planning in Human-Robot Collaboration

The ways robots and humans “think” are very different. Humans are experts at making

qualitative decisions, from low-level movement to high-level reasoning, and robots show great

strength in solving quantitative problems like high-speed data processing, high-precision

repeated motion, etc. Robots can

• deliver constant and stable performance without fatigue;

• collect versatile formats of observation data by different sensors;

• access some particular spaces that humans cannot reach; and

• do repetitive tasks and detailed computations without error, etc.

Humans can

• adapt to environment change in task execution;
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• respond to unexpected occurrences that happen accidentally; and

• be robust to vague or conflicting pieces of information.

In organizing humans and robots in a team, the differences between humans and robots

cannot be ignored. Due to the differences, humans and robots are often assigned different

roles when collaborating in a team. In teamwide collaboration, there is often a team task,

which is defined as the goal of the team. A team “coach” splits the team task into subtasks

for team players. In the spirit of human-centered intelligence, we assume that the team

“coach” is a human who executes high-level planning, splits tasks, and schedules teammates.

The team players include both humans and robots. For example, in a search-and-rescue task,

robots perform dull, dirty and dangerous tasks, and alert a human only when an abnormality

is detected [87]. The human then deals with abnormal occurrences. The robot players explore

regions that are inaccessible and dangerous to the humans, and assist the human players

when needed. Particularly when situations change, the human players are needed to organize

the robot players.

Because task requirements from a human coach are usually qualitative [18], how they

can be precisely translated by robots into quantitative optimization problems is a big challenge.

When a few requirements are ambiguous or difficult to describe, an interactive processes

can be used to identify the human intent. Moreover, we have to consider the collaboration

between the human players and the robot players in task execution. For example, there might

exist constraints between the human’s motion and the robot’s motion in evaluating the team

performance [124]. Generally, the robot is expected to translate qualitative information from

the human into quantitative path planning.

1.1.2 Translating qualitative information into quantitative path planning

Allowing a human to use qualitative instructions to guide a robot simplifies the human’s

task. In modeling a path-planning problem, qualitative information needs to be translated

into quantitative information, including geographic information, objectives to be optimized,
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and constraints. From the qualitative perspective, we are interested in several phenomena

associated with how humans express intent.

• Humans tend to describe task instructions by natural language. Language is an efficient

way for humans to communicate, and robots may be expected to communicate with

humans by language [51, 63]. Although progress is being made on the problem of

human-robot communication via natural language, much work needs to be done to solve

the problem in general and to apply natural language to path-planning in particular.

In path-planning, robots need to be able to both interpret the qualitative semantic

structures associated with a human’s intent as well as to construct quantitative models

that can be computed by processors. A key problem is establishing a shared spatial

common ground between the humans and the robot teammates.

• There often exist multiple objectives in a human’s instructions. In planning a path,

there is often more than one factor to consider [4]. For example, in motion-planning for

a rescue task, a human coach might hope a robot’s search not only covers the most

likely regions but also focuses the robot’s effort in risky regions that humans should

avoid [123]. In this example, there are two objectives: maximizing information and

minimizing the risk to the robot. Extending the example, if the robot is also expected

to reach some goal quickly, minimizing the path length should be added as a new

objective. Human preferences on different objectives are often qualitative, meaning

that they may be difficult to represent by the kinds of quantitative weights used in

an optimization algorithm. Moreover, the objectives can conflict or be incomparable.

Therefore, the robot needs to model multi-objective path planning problems and find

solutions by prior or posterior information [82] that the human coach gives.

• Humans often have topological preferences for planned paths. Spatial constraints,

such as those created by finding a path through obstacles, divide paths into different

topologies [12]. It is natural that a human coach has a preference for some classes of

paths over others [123]. These preferences may come from task requirements, team
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scheduling constraints, or the properties of an agent. These topological differences

can be represented by either a soft path shape constraint or a preference ranking. For

example, the human coach hopes that a robot goes to some goal location as quickly

as possible. In this case, there is no hard constraint of visiting some regions while

avoiding some other regions. But visiting several regions, which means the paths belong

to specific homotopic classes, is implicitly helpful to the performance, i.e. safety. This

type of qualitative information can be important to the task performance and should

not be ignored in planning paths.

This dissertation presents a series of robot motion-planning algorithms, each of which

is designed to support some aspect of a human’s intent. Specifically, we present algorithms

for the following problems: planning with a human-motion constraint, planning with a

topological requirement, planning with multiple objectives, and creating models of constraints,

requirements, and objectives from verbal instructions. These algorithms create a set of robot

behaviors that support flexible decision-making over a range of complex path-planning tasks.

1.2 Related Work

This section begins by reviewing research on human mental models relevant for robot motion

planning. The section then reviews related work that are specific to the algorithms presented

later in the dissertation. Since the dissertation is organized as a series of papers, some of the

literature review is performed in individual papers.

1.2.1 Mental Models in Path Planning

In the literature on human-machine interaction, mental models play key roles. Operationally,

a mental model is “a representation of how current states are turned into consequences

through the actions of an agent” [43]. When we have humans and robots in a team, a shared

mental model is used as a “hypothetical construct” [122] that models and explains certain

coordinated behaviors of teams. It provides a framework of mutual awareness, which serves
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as the means by which “an agent selects actions that are consistent and coordinated with

those of its teammates” [1, 57, 75, 84, 85, 121]. Figure 1.1 illustrates the information flow in

the shared mental model of the coach-based human-robot team described above.

A human’s intent can be operationally defined as a preference over consequences

produced by a robot’s actions and possibly as a preference over the actions used by the robot

to produce a desirable consequence. Because we assume that a robot’s task is given by a

human coach in a human-robot team, information flows from the human coach’s mental

model to the team players’ mental models. Correctly modeling the human’s intent determines

the performance of task execution. However, a human’s intent is often only qualitatively

expressed, making it difficult to translate intent into quantitative models.

Human

Robot
Coach

Player Player

Online

Offline

Human-Human

Robot-Robot

Human-Robot

Figure 1.1: The information flow in the team.

In path-planning problems, the mental model provides goals and preferences for

evaluating the performance of tasks. These goals and preferences are used to find optimal

paths for task execution [26]. Current research work focus on introducing new features to

the robotic mental models for creating new affordances, especially in interpreting humans’

mental models. In human-machine interaction, the term “affordance” refers to “the perceived

and actual properties of the thing, primarily those fundamental properties that determine

just how the thing could possibly be used” [86].

This dissertation presents work that explores how to translate a human’s qualitative

intent into problems with quantitative models, and then how to solve the resulting quantitative

problems. A qualitative map description is one common type of qualitative information
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associated with a human’s mental model [66]. Based on a human-sketched map, a probabilistic

topological structure can be created to model a map with uncertainty [104]. Observations in

navigation are used to correct the probabilistic topological structure, which is used as an

estimated map. Planned paths are then adjusted online by the changes in the estimated

maps. Qualitative information can also be represented by geometrical relations [77, 78] with

landmarks. Within the constraints of feasibility, the estimated map structure can be updated

by noisy sensory measurements.

Another important type of qualitative source is human language [112, 120]. Natural

language instructions can be used as observations in the robotic SLAM problem. In [120],

three layers of maps, which are semantic, topological and metric, are maintained in a

graphical model structure. Both sensor information and human instructions can be merged

into an environmental learning process [5–7]. By using the Bayesian filter framework, human

information is loaded into a softmax likelihood model so that it can be merged into a Bayesian

update.

1.2.2 Algorithm-Specific Work

In order to support the phenomena we mentioned in Section 1.1.2, we now review several fields

that are related. In how to model problems, we review literature in modeling problems from

verbal instructions. In how to support problem solving, we review studies in path-planning

problems with submodularity, homotopy and multiple objectives.

Model Problems from Verbal Instructions

Current human-robot communication relies heavily on training human operators, which means

that the operators should customize information for robots. This prevents human-robot

interaction being applied in more problems

In planning paths, spatial information in the language is a very important for com-

municating a mental model. It has been proposed that a spatial semantic hierarchy is
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maintained in the mental model, which represents the information relationship from the

sensory to the topological and the metrical [66]. There have been a few grammars introduced

to parse sentences into semantic elements by task specifications, e.g. SDC (Spatial De-

scription Clause) [112] and TBS (Tactical Behavior Specification) [15]. Grounding semantic

elements is an important area of current work [63]. In path planning, problems are often

framed as optimization problems that seek to find paths best match given a set of semantic

meanings [15, 112]. This approach can be strengthened by integrating multiple information

sources, such as visual sensors and odometers [45].

Planners have been proposed to infer a human’s intent from a human’s verbal in-

struction [38, 51]. In such planners, groundings are extracted from semantics in a working

environment. The verbal instruction is parsed into phrases by the grammar of the Spa-

tial Descriptive Clause. A factor graph is then created to model correspondences between

groundings and phrases. Some labeled training dataset can be used to train the factor graph

model. After training, the factor graph model can be used to infer the groundings of verbal

instructions.

Multiple Objectives in Path Planning

Tasks assigned to robots are complex which means that they can be performed in several

different ways. This complexity leads to the requirement that the robot must make tradeoffs

among several different objectives. For example, a robot in a search task may be expected to

maximize the coverage area while minimizing energy consumption and avoiding risk; see, for

example the applications in [81, 123]. As another example, a robot manipulator may need to

satisfy performance criteria related to movement, joint velocities, joint accelerations, etc. [89].

A common method of finding a solution of a multi-objective optimization problem

is optimizing the single objective created by a weighted sum of the multiple objectives. In

path-planning with multiple objectives, the properties of the path produced by this method

are determined by how the objectives are weighted. This means that a programmer, designer,
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or human teammate must decide how to assign the weights so that the quantitative behavior

matches the intent. In addition to the burden placed on the human operator, optimizing a

weighted sum does not work when the multiple objectives are very difficult to compare or are

expressed in incommensurate units.

In solving a multi-objective optimization problem, the output is often a set of

non-dominated solutions, which are also often called Pareto-optimal solutions [82]. “Non-

dominated” means that each solution is at least better in one objective or equally the same in

all the objectives when compared with any other solution. In this proposed work, we assume

that there can be an interactive process where a human selects one solution from the set

of Pareto-optimal solutions [73]. In multi-objective path-planning, a set of Pareto-optimal

paths could be found as well. The Pareto-optimal path that best matches the human’s intent

can be selected as the solution that best balances tradeoffs between the objectives.

Most popular methods in multi-objective optimization are not naturally applicable to

path-planning [34, 130]. One approach to addressing this issue is to change the representation

for a path by coding a path as a sequence of fixed-length line segments represented by

directions [4, 52] or waypoints [89, 111] so that an evolutionary algorithm can be applied.

Unfortunately, these approaches do not scale well for large problems, and estimating the

required number of segments is very challenging. Another approach is to represent the path

as a point in a very high-dimensional vector space. In this approach a path is represented as

a point in an n ∗ d dimensional space formed by n different d-dimensional way-points [3, 4].

However the search can be very difficult if we allow the number of way-points and, therefore,

the dimensionality of the optimization problem to vary. The algorithm does not work well when

the obstacles in the path-planning space introduce discontinuities in these high-dimensional

spaces, which limits the applicability of heuristic-based search approaches [111, 130]. There

is still a need for an algorithm that can efficiently and effectively find a set of Pareto-optimal

paths for a given set of objectives.
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Figure 1.2: Path homotopy.

Homotopy in Path Planning

Unlike a point solution in common optimization problems, a path is not only evaluated by its

fitness/cost but also its shape. Humans often represent the world using a topological-based

rather than metric-based path planning [2, 66]. Various methods have been used to create

topological-representations that can be used by path-planners for robots [40, 74, 104, 114].

Obstacles in a map divide paths into topological groups by the similarities in the shapes of

the paths. The topological notion of homotopy presents a formal definition of the similarity

between two paths. This definition can be used both to determine the similarity between two

paths as well as to partition paths into different classes.

The topological concept of homotopy is a mathematical formalism of the inherent

similarity or dissimilarity of two paths and allows us to precisely quantify such topological

constraints. Given two paths, if one can be deformed into the other without encroaching any

obstacle, they are said to be homotopic [48]. In Figure 1.2, the solid paths are homotopic.

But they are not homotopic to the dashed path.

Homotopy-based path planning requires an algorithm to determine the homotopic

equivalence of two paths, which is usually computationally expensive. There are a few research

studies that focus on effectively and efficiently identifying the homotopy class to which a

path belongs or determining the homotopic equivalence of two paths. The Voronoi diagram

is used to identify a path from any homotopy class in [8]. By converting any path into a

simple path from the Voronoi diagram, the homotopy class of the path can be determined.
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However there exist limitations on finding some paths in a map with complex obstacles

by this approach. By applying the funnel algorithm in the universal covering space, the

minimum-length path is efficiently optimized in a given homotopy class in [49]. Similar to the

Voronoi approach, the complexity of the problem is increased when the shapes of the obstacles

are not smooth and convex. Semi-algebraic cuts are used to convert paths into “words” so

that the homotopic equivalence can be recognized in [44]. Also, the Cauchy Integral theorem

has been introduced to determine the homotopic equivalence of any two paths by marking

some positions in obstacles as undefined [12]. Given two paths sharing the same start and

goal, we can determine whether there is an obstacle inside a region that is enclosed by two

paths by the value of the complex integral. Because the map is discretized, the computation

cost expands greatly if some complex obstacles are reasonably approximated by the cells.

How to efficiently and effectively find the optimal paths in different homotopy classes is still

an open question.

Submodularity in Path Planing

Search is a very important task in path planning. In planning motion for a search task, the

objective is usually to maximize the information collected with a limited motion resource.

Because observations cover a region around the search agent, using a coverage model for the

robot makes the path planning a maximum coverage problem. Maximum coverage is known

to be a classic NP-hard combinatorial optimization problem [80] because coverage overlap

cannot be ignored. Mutual information is introduced to measure the total information of a set

of observation coverages, which implies a property of “nondecreasing submodularity” [108].

Submodularity is defined as a function property [108], which is:

∀A ⊆ B ⊆ V and s ∈ V \B; f(A ∪ s)− f(A) ≤ f(B ∪ s)− f(B). (1.1)
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A greedy approximation with a known performance bound can efficiently exploit the sub-

modularity property of mutual information [108]. A branch and bound approach can also be

used in informative path planning [13].

Maximizing the reward collected from a limited-length graph walk is usually known

as an orienteering problem [118], in which the total reward is a sum of the rewards of

visited vertices. If the reward function of a vertex has the submodularity property as

in a maximum coverage problem, the problem is defined as a submodular orienteering

problem [24]. Unfortunately, in the submodular orienteering case the location of the robot

at time t constrains the reachable locations at time t+ 1. Thus, naively applying a greedy

algorithm to the submodular orienteering case, that is, with a “teleport” assumption, yields

poor results [64]. For a generalization of the submodular orienteering problem in which the

neighboring constraint can be converted into a time budget, a recursive greedy algorithm can

be applied [24]. If the planning is considered for a human-robot team as we are proposing,

the collaboration and the constraints between team players cannot be ingored. When we

import the constraints from a human teammate’s behavior to submodular path planning,

this solution will not work any more.

1.3 Project Description

The papers in this dissertation model the following aspects of information flow from a human

to a robot:

• How to support multiple objectives in tasks,

• How to support human’s topological preference, and

• How to model problems from a language instruction.

Figure 1.3 illustrates the components and the relationship. Table 1.1 shows how the list of

model requirements above can be interpreted as a general type of problem from the literature,
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Language Path
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in Path-Planning
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Figure 1.3: A framework from qualitative to quantitative.

and identifies a specific algorithm developed to solve the problem for path-planning in a

human-robot team.

1.3.1 Model Path-Planning Problems from Natural Language Instructions

A human-natural way of human-robot interaction is to use human language. Instead of

focusing on generic natural language processing problems, we only look at how path-planning

problems can be modeled from semantic structures. The semantic structures are generated

from verbal instructions by existing grammar parsers [63]. We need to provide methods to

infer the task definition from the semantic structures, focusing on the requirements with

multiple objectives and topological preferences.

The Tactical Behavior Specification (TBS) language has been introduced as a grammar

to support instructions with spatial relations [15]. We extend this grammar so that it

can be applied in our context in two ways: grounding adverbs and allowing topological

preferences [123]. For example, if a human coach tells a robot to “go around building A

quickly and carefully and then between the two trees while avoiding region C”, it implies that

there potentially exist two objectives from the adverbs, “quickly” and “carefully”. Practically,

this might mean to minimize the path length and minimize the risk. It also indicates the

topology of the path that the human wants: “around building A”, “between the two trees”

and “avoiding region C”. The semantic structures can be grounded into multi-objective path
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Requirement Problem Algorithm

Model problems from verbal
instructions

Grounding multiple objectives
and topological preference in
natural language

HoDCG

Support multiple objectives
in tasks

Multi-objective path planning MORRF*
MORRF*-AWA

Support humans’ topological
preference

Submodular path planning with
reference path constraint

Wingman
path-planning

Homotopy-based path planning HARRT*
TARRT*

Table 1.1: Project description.

planning, homotopy-based path-planning or submodular path planning with constraints. The

details are provided in Chapter 4.

We use a graphical model to infer the relations between the semantics and the

groundings. The graphical model has been a popular tool to model ambiguous relationships

between utterances and semantics. After training by language samples, the graphical model

could infer the meaning of verbal language. Similarly, we can use it to understand a human’s

verbal commands to a robot. In the application of path-planning, the human’s verbal

command is associated with spatial elements. Therefore, the Spatial Descriptive Clause

(SDC) has been introduced to parse the verbal command into a sequence of phrases [63].

The process of assigning physical meanings to phrases is called grounding. A verbal

sentence is decomposed into phrases λri , which carry the information from the human.

Grounding variables γrj are extracted from the map, which include

• verb fields : the change in orientation between the viewpoints from verb/action semantic,

• figure and landmark fields : the viewpoint transition and the detected objects, and

• spatial relations : the functions of the geometries of the paths and the landmarks.
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Figure 1.4: How a factor graph is constructed.

By assuming that the groundings are conditionally independent, a conditional random field

(CRF) can be used as an undirected graphical model for the relationship between the phrases

and the groundings. Correspondences φk are introduced to indicate whether a grounding

element is linked with a phrase from the SDC [112], indirectly, it measures how the grounding

variables match the verbal sentence. The corresponding node φk connects the grounding

node gammarj and the phrase node λri . A labeled dataset can be used to train the graphical

model. The objective of the training is maximizing the likelihood of the correspondences.

arg max
φi,j∈Φ

∏
p(φi,j | γrj , λri ) (1.2)

Equation (1.2) can be converted into a graphical model. Firstly, a verbal command is parsed

into a phrase structure. Figure 1.4a shows a phrase structure of a sentence “walk by the

left of the table”. Each phrase corresponds to a factor model as illustrated in Figure 1.4b.

Each factor model defines the relationship among a phrase λi, a correspondence variable

φi, a grounding γi and groundings in other models γj. By the structure of the phrase, a

factor graph can be created. Figure 1.4c gives a factor graph that is created from the phrase
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structure in Figure 1.4a. The trained graphical model can then be used to infer the most

likely grounding nodes from a given verbal command.

It is noticeable that some adverbs might mean different things in different contexts.

For example, in a sentence of “put the pallet carefully on the truck”, “carefully” requires

a smooth motion. But in a sentence of “walk carefully in the crowd”, “carefully” means

avoiding collisions with someone else. It can also define multiple objectives as well, e.g.

smoothly moving and collision avoiding simultaneously. A human language understanding

process helps identify the human’s intent behind an utterance. We can create a factor graph

to model the correspondence between the adverbs and the intended objectives in different

sentences and scenarios [112]. After training, it can be used to infer what kind of objectives

that the human intended in the verbal command.

Topological preferences can be extracted from human language. In [51], the topological

preference is inferred from human language and is used as a hard constraint in path planning.

Sometimes, the topological preference can be a soft constraint. For example, if a human coach

says “better avoiding region C”, he/she prefers avoiding region C but not necessarily. The

topological preference can also be the order of different homotopy classes. “Going through

between A and B is better than between A and C” implies a homotopy class via the region

between A and B is better than a class via the region between A and C. We present an

algorithm that constructs a factor graph to represent the preference relationship between the

groundings and the verbal phrases.

1.3.2 Multi-Objective Path Planning

To support a complex decision with multiple objectives, we define a multi-objective path

planning problem and present an algorithm to find solutions.

When there are multiple objectives in a task, the goal is to find a solution that trades

off between the objectives. A common method for finding a solution to a multi-objective

optimization problem is to optimize a single objective created by a weighted sum of the
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(a) Solution space.

Objective 1

Objective 2

(b) Objective space.

Figure 1.5: Multi-objective path-planning.

multiple objectives. This means that either a programmer, designer , or a human teammate

must decide how to assign the weights so that the qualitative behavior matches what is

intended. Optimizing a weighted sum does not work when the multiple objectives are very

difficult to compare or are expressed in incommensurate units. Thus, it will be better if a set

of Pareto-optimal paths is firstly found and the human teammate can select one of several

options.

Given this context, we now define the multi-objective path-planning problem to find a

set of Pareto-optimal paths. Consider a multi-objective path-planning problem defined on a

bounded, connected open set of possible solutions (in Figure 1.5a), and K different objectives

(in Figure 1.5b). Without loss of generality, assume that each objective is to minimize these

functions. Since the Pareto-optimal set of paths in Rd is not enumerable, the goal is to find a

representative, finite (M-element) subset of the Pareto-optimal set. By “representative” we

mean a diverse set of solutions that span the Pareto set rather than, for example, several

points clustered in a single region of the Pareto set.

In contrast to searching through and comparing solutions in order to find a Pareto-

optimal set, we use a decomposition-based method similar to MOEA-D [130]. MOEA-D is an

algorithm that decomposes a multi-objective optimization problem into a set of subproblems.

Each subproblem uses a weighed combination of the objectives to find specific points in the
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Reference tree

Subproblem tree

Figure 1.6: Rapidly exploring process

Pareto set or to guide the search for such points. The solutions generated by each method

are a subset of the Pareto-optimal set.

Chapter 5 presents an algorithm that explores the solution space using RRT*-based

tree structures but uses multiple trees in the spirit of decomposition-based multi-objective

optimization. Because a set of trees are constructed in the exploration process, we call the

algorithm MORRF* (Multi-Objective Rapidly exploring Random Forest*). Adopting the idea

from the MOEA-D algorithm [130], the M elements in the solution set Σ∗ will be obtained

from M subproblems decomposed from the multi-objective problem.

Thus K reference trees are used, one each to explore the minimum of each objective,

and M subproblem trees are used, one for each weighting vector, λm. The K reference trees

and M subproblem trees constitute the exploration forest, as in Figure 1.6. The solutions

obtained from M subproblem trees constitute a set of Pareto-optimal paths, which are the

solutions to the multi-objective path-planning problem.

Weights for defining subproblems are uniformly sampled from a high-dimensional

simplex for better diversity of solutions. However, the mapping from weight space to solution

space is not linear. It means that the diversity of solutions still cannot be guaranteed. In

order to maximize the diversity, Chapter X presents an algorithm called MORRF*-AWA,

which is an enhanced MORRF* with “adaptive weight adjustment”, which is discussed in

Chapter 6. The notion of sparsity level is introduced to measure the how well the set of
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possible solutions is being explored. Subproblem trees with lower sparsity levels will be

removed while exploring the space. New subproblem trees will be created by weights that are

likely to lead to solutions with high sparsity level. As a result, the diversity of the solutions

can be increased.

1.3.3 Involving Topological Preferences in Path-Planning

We categorize topological preferences into two types by considering the level of collaboration.

If a human and a robot are constrained in a collaborative movement in shared space, the

motion of the robot has to be constrained in a region near the position of the human. A

topological preference is defined by a reference path from the human. By considering the

sensor coverage overlap in collaboration, we can model the problem as submodular path-

planning problem with a reference-path constraint, which is described in Section 1.3.3. If we

ignore the collaboration, the topological preference can then be presented by the homotopy

classes in the map. Therefore, in this case, we can model the problem as homotopy-based

path-planning problem in Section 1.3.3

Submodular Path-Planning with Reference Path Constraint

Before task execution, a coach can assign a subtask for a robot player to explore the world

while staying near a human teammate. For this type of topological preference, the information

about the human is given to the robot. Thus, assuming that the human player’s motion can

be predicted or is known, the robot player’s motion is constrained by the human player’s

motion, yielding a path-planning problem with a reference-path constraint. We call this

situation the robot wingman problem, which is addressed in Chapter 2

The coverage model is chosen to be the observation model of a search agent. Informa-

tion entropy is used to model the information gain in the cooperative search in a human-robot

team. We discretize a workspace into a set of cells so that the movement is constrained in
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Robot
observation
range

(a) A coverage model of observation. (b) A role of robot wingman.

Figure 1.7: A Robot Wingman Framework.

transiting from one cell to any of its neighbors. Also the observation of a search agent covers

not only the cell he/she occupies but also neighboring cells within a given range.

We select the wingman as a role for the robot player, though there are a few roles

that define how the robot’s path is constrained by a human. The wingman role requires that

the robot player remains within a tolerance range near around the human player while the

human player is moving, as in Figure 1.7b.

Urban map Topology graph Multi-partite
 graph

Human path

Figure 1.8: A Robot Wingman Framework.

Chapter 3 presents a solution to the plannning problem of a robot in a human-path

constraint. Assume the robot has a model that can predict the human’s path. At each

time step, the wingman relationship induces the set of visitable cells for the robot. We can

construct a multi-partite graph from the human-constrained path. Each partition is consist

of the set of visitable cells at a corresponding time step. The edges are determined by the
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(a) Topology space. (b) Path space.

Figure 1.9: Map with obstacles.

neighborhood of each cell from the discretized map. Figure 1.8 illustrates how a multi-partite

graph is extracted from a workspace for planning.

In order to guarantee that the search process on a multi-partite graph always ends

with a feasible path, we use a pruning process to ensure that each vertex can be reached from

the previous partition and is connected to a vertex in the next partition. We propose to use

backtracking to estimate the maximum total reward and use this estimation as our search

heuristic. We then propose to use an expanding tree to create an anytime algorithm that

approximates solution to the submodular orienteering problem on the multi-partite graph.

Homotopy-based Optimal Path Planning

Observe that, in planning paths for a robot player, a coach may want to express topological

constraints like “go to the left of the obstacle”. A set of paths that are homotopic to each other

forms a homotopy class, and the set of homotopy classes partition the set of all possible paths

between any two points A and B. In an environment containing obstacles, the homotopy

partition can provide a useful way of grouping paths together based on the similarities of

their “shapes”, where the term “shape” is interpreted by using the formal topological notion.

A human can reason in topology space, as in Figure 1.9a. While, a robot can utilize the

topological information from the human to find paths, as in Figure 1.9b.

Chapter 7 presents an algorithm for homotopy-based path-planning problems. Refer-

ence frames are randomly generated that separate a map into subregions. They are used to

create a homotopic DFA that converts any path into a string. The strings of paths can be
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(a) Specifying a topology. (b) Visiting or avoiding regions. (c) No topology preference.

Figure 1.10: Different levels of topology information.

used to identify the path homotopy. We firstly proposed a homotopy-aware RRT* (HARRT*)

algorithm. This algorithm uses an RRT* algorithm to explore possible paths, but each

branch of a random tree is aware of the homotopy class to which it belongs. HARRT* use a

bidirectional RRT* to obtain the optimal cost-to-come and cost-to-go of different positions.

We can eventually have the optimal path with a via-position constraint by combining (a) the

optimal subpath from the start to the via-position with (b) the optimal subpath from the

goal to the via-position. In order to explore any possible homotopy class (including winding

homotopy class), we later proposed a topolopy-aware RRT* (TARRT*), which is introduced

in Chapter 8 The exploration of a homotopy class is enforcing branching by a sequence of

subregions that is determined by the class.

Theoretical analyses of both algorithms are provided in Chap 9. The homotopy-based

optimal path-planning supports different levels of topology information from human. Three

levels are illustrated in Figure 1.10. Figure 1.10a means a defined topology from a human,

which requires that a planner returns the optimal path of the topology. Figure 1.10b shows

that a visiting region (green) and an avoiding region (red) specified by a human. This

determines one or several eligible homotopy classes for planning paths. Another scenario is

that a human has no topology preference. A planner should explore several possible homotopy

classes, as in Figure 1.10c. It returns the optimal paths of them to the human to select.
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1.4 Dissertation Chapters

This dissertation consists of nine papers, two of which are being prepared for submission.

The papers are generally included in chronological order. The order is also determined by

relations and dependencies. We also include one extra paper in the Appendix. This section

gives a brief description of each chapter.

Chapter 2, which was published in [42], presents a Bayesian approach of modeling

task-based mental models of a human-robot team. By using a robot wingman in a search

task as an example, the shared mental model of a human-robot team is modeled as an

information-update process.

Chapter 3, which was published in [124], presents algorithmic solutions to the coop-

erative team search with a robot wingman, which is defined in Chapter 2. A human-path

constraint converts a search space into a multi-partite graph. A backtracking heuristic is

integrated into an anytime framework to find solutions that maximize the robot’s performance

in a human-robot team.

Chapter 4, which was published in [123], presents a semantic-based path-planning

algorithm to support collaboration in human-robot teams. The high-level human information

is expressed by language command. The semantic information defines path-planning problems

that leads to low-level manipulation of robots, which reveals multiple objectives and path-

topology requirements.

Chapter 5, which was published in [125], presents an algorithm for multi-objective path-

planning problems. The algorithm, MORRF*(Multi-Objective Rapildly-exploring Random

Forrest*), uses a set of trees parallel exploring the solution space. The solutions that are

returned by the trees asymptotically converge to Pareto-optimal paths.

Chapter 6, which is in preparation to be submitted to the Journal of Artificial

Intelligence Research, extends MORRF* in Chapter 5. It introduces a new approach of

defining subproblems and presents more complete performance analyses. We also introduce

adaptive weight adjustment to MORRF*, which leads to a new algorithm MORRF*-AWA.
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The new algorithm adjusts the weights in exploration that provides better diversity in the

Pareto-optimal solutions.

Chapter 7, which was published in [128], presents a framework of homotopy identifica-

tion. It is used to support homotopy-aware RRT* that uses bidirectional RRT* to find the

optimal paths of simple homotopy classes.

Chapter 8, which was published in [127], presents a new algorithm, topology-aware

RRT*, that extends the homotopy-class exploration from simple homotopy classes to all

homotopy classes.

Chapter 9, which is in preparation to be submitted to IEEE Transactions on Robotics,

integrates HARRT* in Chapter 7 and TARRT* in Chapter 8. It also provides theoretical

analyses on both algorithms.

Chapter 10, which was published in [129], presents a language understanding algorithm,

HoDCG, which is a factor graph created by the relationship of semantic elements. Path-

topology information from human-language instructions is grounded to create path-planning

problems with topological constraints. Path-planners can then be used to generate paths that

satisfy the topological constraints. This process converts language instructions into paths for

robotic navigation.

Chapter 11 concludes with findings of the dissertation work and summarizes the

contribution of the dissertation. It also describes possible future work.

Appendix A, which was published in [126], introduces input-to-state stability to the

convergence analysis of PSO algorithm, which models it as a consensus reaching problem in

a swarm of particles. The results can be used to understand the dynamics of the optimal

search in PSO and guide the parameter selection. This paepr in the appendix is not central

to the theme of the dissertation, but is included because it is interesting work done while

performing the rest of the dissertation research.
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Chapter 2

Toward Task-Based Mental Models of Human-Robot Teaming: A Bayesian

Approach 1

Abstract

We consider a set of team-based information tasks, meaning that the team’s goals are

to choose behaviors that provide or enhance information available to the team. These

information tasks occur across a region of space and must be performed for a period of

time. We present a Bayesian model for (a) how information flows in the world and (b) how

information is altered in the world by the location and perceptions of both humans and

robots. Building from this model, we specify the requirements for a robot’s computational

mental model of the task and the human teammate, including the need to understand where

and how the human processes information in the world. The robot can use this mental model

to select its behaviors to support the team objective, subject to a set of mission constraints.

1Published in 5th International Conference, VAMR 2013, Held as Part of HCI International 2013. Authors
are Michael A. Goodrich and Daqing Yi.
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2.1 Introduction

In complex, rapidly evolving team settings in which a robot fulfills a role, the robot needs

sufficient autonomy to allow its human teammates to be free to direct their attention to a

wider range of mission-relevant tasks that may or may not involve the robot. In contrast to

many prior applications in which the robot was either teleoperated or managed under strictly

supervisory control [88], recent advances in robot technologies and autonomy algorithms are

making it feasible to consider creating teams in which a robot acts as a teammate rather

than a tool [22].

In this team-centered approach, both humans and robots can take on roles that match

their strengths. Properly designed, this can facilitate the performance of the entire team.

This idea has already been applied to reform human-robot interaction in many areas, like

object identification, collaborative tasks performance, etc. [50]. In this paper, we adopt the

notion of collaboration, operationally defined as the process of utilizing shared resources

(communication, space, time) in the presence of asymmetric goals, asymmetric information,

and asymmetric abilities as illustrated in Fig. 2.1. The word collaboration suggests that

there are both overlaps and differences between the goals, information, and abilities of the

agents involved. Colloquially, collaboration can happen when everyone has something unique

to offer and something unique to gain, but there is some benefit to each individual if activity

is correlated.

In a human-robot team, the asymmetries on abilties and information mostly come from

the natural difference on agents’ sensors and actuators. Additionally, an agent may exhibit

ability and information asymmetry in different states of interacting with the environment,

like location, lighting condition etc. Often, a team goal will be decomposed into subgoals

in execution. The subgoals are usually assigned to agents in the team by organizing agents

into specific roles with specific responsibilities, and this leads to goal asymmetries. In a

collaboration framework, the interaction between agents not only focuses on common goals,

but may also require providing support for others’ goals. In a team search tasks, for example,
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Figure 2.1: Operational Elements of Collaboration.

the robot and the human might work together for target searching, while the robot might

assist the human to deal with an emergency.

Collaboration is a form of teamwork that benefits from an explicit representation of

shared intent. The theory of shared intent suggests that both the human and the robot need

to have a mental model for the task to be performed and another mental model for how

other team members will act [98]. The primary contribution of this paper is a framework

for developing a task-based mental model from a human-robot collaboration perspective,

including the ability to represent and reason about contributions of other team members to

the mission and estimation of how other team members’ actions affect performance.

2.2 Shared mental model

From studies of cognitive psychology, the concept of a shared mental model has been proposed

as a hypothetical construct, which has been used to model and explain certain coordinated

behaviors of teams. Shared mental models provide a framework of mutual awareness, which

serves as the means by which an agent selects actions that are consistent and coordinated
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with those of its teammates. According to [75], in order to perform collaboratively as a team,

members of a team must have the following:

• Teammate Model: knowledge of teammates skills, abilities and tendencies.

• Team Interaction Model: knowledge of roles, responsibilities, information sources,

communication channels and role interdependencies.

• Team Task Model: knowledge of procedures, equipment, situations, constraints.

These elements determine (a) how an agent makes decisions as a member of the

team and (b) how diverse capabilities and means of interactions are managed within an

organizational context. These concepts have been incorporated as important elements in

existing human-robot team designs [84]. From a robot’s perspective, operating within the

context of a human-robot team, the robot’s shared mental model will help the robot predict

information and resource requirements of its teammates. Importantly, a better understanding

of task demands and how teammates will likely respond will enhance the robot’s ability to

support team-level adaptations to changes in the world.

Given a shared intent from the team, the robot is assigned or adopts tasks, either

as an autonomous agent or as a collaborating teammate. What does the robot need to

collaborate? We address two fundamental elements: (1) How should the robot model the

task? (2) How should the robot model a human performing the task? We then illustrate

how the concept of a shared mental model is applied within a search task by providing an

example computational model that responds to these two questions.

2.3 Robot wingman in a search task

We introduce the shared mental model to a human-robot team search problem. In the

problem, the search region is modeled with the belief of where the target objects are, and

the search process works as constantly updating this belief by observations. Thus, teams of
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humans and robots manage a region of space subject to particular time or timing constraints

[95].

From prior work in search theory, search efficiency is usually considered as one of the

essential factors to a task success, and is therefore a central element of the team’s model of

a search task. There are several parameters to measure the efficiency in a search task [95],

which are determined by the observation capability of a search agent. In this paper, we are

interested in:

• Sweep Width: a measure of how wide an area a searcher can, on average, effectively

cover. More specifically, it represents how well a sensor (e.g., the human eye) can detect

specific objects as a function of distance from sensor to object.

• Coverage: a simple measure of how well a segment was covered by all of the searchers.

Coverage is a ratio calculated by summing up the area that each searcher covered and

dividing by the area of the search segment.

• Probability of Detection: a measure of the probability of success. Search managers

need a way to determine the probability that a lost object would have been found if it

was actually in the segment that was searched.

Effective swept width and coverage are determined by the sensor model of a search

agent; the sensor model encodes the characteristics and capabilities of the agent’s sensors.

This model defines what the observation range of an agent is, and how the observation

uncertainty might change with the distance of a target object. By contrast, the probability of

detection shows the probability that an object would have been detected if in the area, which

can be modeled as (a) an agent’s prior belief that an object is in the search region and (b)

the quality of the agent’s observation. Since all agents are imperfect detectors, there exist

differences in detection success and detection times among agents.

There is relevant prior work on applying these concepts to human-robot teams. [23]

and [37] import robots into urban search and rescue so that human unreachable locations
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Figure 2.2: A Robot Wingman framework.

can be explored, which greatly extends the coverage of search task execution. Integrating

various types of sensors, like radars, laser rangefinders, ultrasonic sensors etc. [97] [21], greatly

expands the sweep width of a search team. [87] and [22] propose a way to improve the

probability of detection using information fusion across multiple agents. Modeling the team

as a distributed information fusion process exploits the asymmetric perception capabilities of

humans and robots to enhance the search efficiency of the team.

In our proposed human-robot search team, we assume that the human is better at

strategy and decision making and the robot is better at raw data collection. This assumption

forms the basis for the robot’s model of its teammate. We propose the notion of a robot

wingman to support a human in a collaborative search task, which is to have a robot that

accompanies a human as he or she navigates through some space. Since a robot may be able

to detect certain types of signals not perceivable by a human (e.g., radio signals or chemical

gradients), it is possible for the wingman robot to extend the team’s perception not only in

space but also in the type of data perceivable by the team. As shown in Fig.2.2, as a flank

support range that constrains where the wingman can move. The robot wingman is expected

to stay in an area determined by the flank support range around the human, when the human
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Figure 2.3: Information Flow in a Wingman Human-Robot team.

is moving for the search task. Doing so guarantees that the robot rapidly respond to the

human needs assistance, which maintains a reasonable distance for supporting communication

and coordination. In a shared human-robot search problem, the robot’s role not only includes

staying within the flank support range, but also includes gathering information about the

world around the team.

The organization of the team determines how information flows when executing the

search task. Thus, the organization is an important element of the team interaction model,

with information flow acting as the currency of interaction. Information flow shapes the

process of fusing asymmetric information for collaboration. In the next section, we model

the belief of the locations of the search objects by a shared task model. The information

comes from the observations from both the human and the robot. Meanwhile, the robot

predicts how the human will work and what the information collected by human is like, and

this prediction is used to make a decision on how to run the search operations as in Fig.2.3.

2.4 A Bayesian Approach

We present a Bayesian model for how information flows in the world and how information is

altered in the world by the locations and perceptions of both humans and robots. Building

from this model, we can specify the requirements for a computational mental model of the

human teammate to understand where and how the human processes information in the
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world. The robot can then select its behaviors to support the team objective, subject to a set

of mission constraints.

The world is represented as a discrete set of cells. For each cell, we wish to determine

the probability that an object of interest is in a particular cell given a set of observations.

Let Sti and Ot
i denote state and observation random variables that encodes whether an object

of interest is in cell i at time t. Given a set of N cells, we will move or position the robot

such that we gather a series of observations that provide information about all of the cells or

some subset of those cells.

Since observations will be taken over time and since objects of interest can move over

time, we formulate the problem as a sequential Bayes estimation problem. Given t sequential

observations about cell i, our belief that an object of interest is in cell i at time t is given by

the following:

belt(si) = PSti |Oti ,O
t−1
i ,···O1

i
(sti | oti, ot−1

i · · · o1
i ). (2.1)

Equation (2.1) is the a posteriori estimate that an object of interest in cell i has been

detected given all observations to that point position. Adopting the standard conditional

independence assumptions of the Bayes filter [113], the sequential estimate becomes

belt(si) = αPOti |Sti (o
t
i | si)bel

t
(si), (2.2)

bel
t
(si) =

∑
j

∑
sj∈S

[PSti |S
t−1
j

(si | sj)belt−1(sj)], (2.3)

where bel
t
(si) is the predicted distribution of objects of interest, α is the normalizing constant

required by Bayes rule (equal to one divided by the prior predictive distribution), POti |Sti (oi | si)

is the detection likelihood, and PSti |S
t−1
j

(si | sj) is the model for how objects move in the

world.
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In this paper, s = T or s = F indicate that the cell contains an object of interest or

not. For each cell, we track the belief that an object of interest is in that cell as a function of

time. Given a prior belief about objects in the cell, we predict the probability that an object

of interest will still be in that cell given (a) the presence or absence of an object in that cell

on the previous time step, and (b) the presence or absence of objects in neighboring cells in

the previous time step. Thus, Equation (2.3) includes a double summation, one for all cells in

the world (the sum over j) and the other over the presence or absence of objects in that cell.

The process of a search task can also be considered as information gathering. From

(2.2) and (2.3), we can see that information from observation updates the belief of the search

region, which results in uncertainty reduction. We select entropy, which is a commonly used

criterion for measuring uncertainty [32], to quantify information collection. It is written as:

H(belt(si)) = −
∑
si∈S

[belt(si) log(belt(si))]. (2.4)

2.5 Case Study

Consider a two-dimensional simplified representation of the world and adopt an occupancy

grid representation of information in the world. We create a hexagonal tessellation of the

world with the dimension of the hexagon determined by the perceptual capabilities of the

human. The hexagonal tessellation is useful because it is one in which the distance from the

center of one cell to any of its immediate neighbors is constant.

Before exploring the search region, we have no information on this area. We use the

entropy of the shared belief to define the uncertainty in equantion (2.4). More formally,

we will assume that the prior probability that a cell is occupied by an object of interest is

equal to 0.5, which means that the probabilities of the search object in the cell or not are

equivalent.
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2.5.1 Teammate Model

From the teammate model of human behavior, the wingman robot can predict how the

human will move. This yields a sequence of cells that the human plans to traverse, which is

denoted by Y = [y1; y2; · · · yD]. Each yt corresponds to a physical location in the tessellation,

so yt = i means that the human was in cell i at time t.

We adopt a very simple model of agent perception, albeit one based in search theory.

The model is that the likelihood of detecting an object of interest in cell i is certain if the

human occupies that cell, is zero for cells outside a fixed radius of detection, and is constant

for all cells within the radius of detection. Let N(i) denote the set of all cells that are within

R units of cell i, in which R defines a radius,

N(i) = {j : j is no further than R cells from i}. (2.5)

Let λ ∈ (0, 1) be the constant of detection for all cells within N(i). Thus, an agent’s

probability of detection at position xt is given by Equation (2.6).

POti |Sti (F | T ) =


0 if i = xt

1− λ if i ∈ N(xt)

1 otherwise

(2.6)

By definition, POti |Sti (T | T ) = 1−POti |Sti (F | T ). In (2.6), we assume a search agent can

do perfect observation in the cell he is in. However, there exist distinctions on probabilities

of detection in the neighbor cells, which come from the difference on agent perception

capabilities. To differentiate the observation range, we use Nhuman(yt) and N robot(xt) for the

set of observed cells by human and robot at time t.
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2.5.2 Team Interaction Model

The team interaction model uses the flank support range Rhuman
flank to determine the set of

cells for the wingman robot motion. This is based on the human’s tolerance for how far the

robot can wander before being out of position. We use (2.5) to translate Rhuman
flank into a set of

feasible cells, Nhuman
flank (yt), in which yt is the human’s position. Given a motion range of the

wingman robot at a time step, Rrobot
motion, we have

∀yt , xt ∈ Nhuman
flank (yt) ∩N robot

motion(xt−1) (2.7)

to define the wingman robot motion dependence on the human motion.

In this paper, we assume that the teammate model provides enough information to

estimate the human’s path via prediction, Equation (2.6) can be used to determine the

posterior probability of likely target location after the human has moved. The posterior

from the human is then used as the prior for the robot. In essence, this means that the

shared belief about the world passes through two phases: a refinement that comes because

the human has moved through the environment and a refinement that comes because the

robot is going to move through the environment.

2.5.3 Team Task Model

When the robot plans to fulfill its role for the task model, it assumes that objects of interest

do not move, appear, or disappear over time, but this will change in future work. Given

this assumption, the prior estimate for the target object’s location at time t is equal to the

posterior estimate for target object location at time t− 1. In future work, if the object of

interest can move, then a predictive step is required and a full Bayes filter can be applied

[113].

Since the human’s path has been obtained from the teammate model (the robot is

supporting the human), our goal is to control the robot’s path to maximize the amount of
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information gathered by the human and robot combined. When the robot is at xt, it will

update the beliefs of all the neighbor cells defined by the radius of detection, Rrobot. We

denote the information gain at position xt as

F (xt) =
∑

i∈Nagent(xt)∪xt
[H(belt−1

i )−H(belti)]. (2.8)

In (2.8), H(belti) denotes the entropy of the belief of cell i at time t, and F (xt) shows the

uncertainty reduction at time t from the all the observed cells.

In order to keep synchronization with human motion, a requirement imposed by the

interaction and task model, we assume that the robot starts in the same location as the

human and intends to plan a time length identical with the predicted human motion length.

We set the initial position by x0 = y0 and the planning time length to D. These constraints

yield a natural tree structure for the problem, which forms a tree by finding all “visitable”

cells by (2.7). The problem is thus to find the sequence X = [x1;x2; · · ·xD] of robot positions

such that

D∑
t=1

F (xt) = H(belD)−H(bel0) (2.9)

is as large as possible. Performance can either be described as a summation of information

gain at each time step or the total information gain reward. Putting this together with the

constraint (2.7) from the team interaction model yields the constrained optimization problem

for the team task model.

max
x1···xD

∑D
t=1 F (xt)

subject to xt ∈ Nhuman
flank (yt) ∩N robot

motion(xt−1).
(2.10)

Fig.2.4 shows a case of how the entropy of the shared belief of the search region has

been updated by the search of the human-robot team. To visualize the entropy, we color the

maximum value in black and minimum value in white, which determines the gray transition
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(a) After Human Visited (b) After Wingman Robot Visited, FSR = 2,
ROR = 2

(c) After Wingman Robot Visited, FSR = 2,
ROR = 3

(d) After Wingman Robot Visited, FSR = 3,
ROR = 2

Figure 2.4: The entropy of shared belief of the search region changed after observation, FSR
is short for FlankSupportRange, ROR is short for RobotObservationRange.
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for the values in between. Before the search begins, we assume we have no idea on the

location of the search object so that all the cells have been colored black which shows the

largest uncertainty. For visited cells, the entropy is reduced to zero. This means the entropy

of the shared belief of this cell has been reduced to zero so that this cell has been colored

white.

2.5.4 Simulation

Fig.2.4a shows how the entropy of the shared belief of the search region has been changed

by a human search agent. The robot’s teammate model assumes, via Equation (2.6), that

the human has imperfect observation in neighboring cells, so the entropy of the believes on

neighboring cells has been reduced less than the visited cells. The value of the gray color is

determined by how the observation model is defined.

Based on the human path and how the shared belief of the environment has changed,

the robot wingman plans a path to optimize the team information gain, subject to the

teammate interaction model via Equation (2.7). Fig.2.4b, 2.4c and 2.4d show the entropy of

the shared belief of the search region after the search of the robot wingman within different

parameters. We use arrows to label the planned path of the robot wingman. We can see that

increasing the observation range of the robot will usually not influence the planned path for

the robot wingman, as Fig.2.4b and 2.4c have the same path shapes. However, increasing the

flank support range, which gives more motion freedom to the robot wingman, will lead to a

new generated path, as shown in Fig.2.4d.

2.6 Conclusion And Future Work

Based on shared mental model and search theory, we model team-based search as an

information-based task using a Bayesian approach. A wingman robot has been introduced for

this problem, with robot decision algorithms designed to support collaborative human-robot

interaction. Using the entropy of the belief of the search region as a way of information
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measurement, we illustrate how the robot wingman will do path planning for collaborating

with the human as an optimization problem. Using a specific case, we illustrate how the

human robot collaboration on a search task will change the entropy of the belief of the search

region, which works as a shared model on the environment from the team perspective. Here

we only use a depth-first exhaustive search to find the optimal solution for wingman path

planning. Future work will be focused on proposing an efficient and applicable solution

for wingman path planning. Moreover, we will add more features on modeling the search

environment, like obstacles and stochastic dynamics. Finally, we will relate problem modeling

assumptions to the requirement of a shared mental model.
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Chapter 3

Informative Path Planning with a Human Path Constraint 1

Abstract

One way for a human and a robot to collaborate on a search task is for the human to

specify constraints on the robot’s path and then allow the robot to find an optimal path

subject to these constraints. This paper presents an anytime solution to the robot’s path-

planning problem when the human specifies a path constraint and an acceptable amount

of deviation from this path. The robot’s objective is to maximize information gathered

during the search subject to this constraint. We first discretize the path constraint and

then convert the resulting problem into a multi-partite graph. Information maximization

becomes a submodular orienteering problem on this topology structure. Backtracking is used

to generate an efficient heuristic for solving this problem, and an expanding tree is used to

facilitate an anytime algorithm.

1Published in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Authors
are Daqing Yi, Michael A. Goodrich and Kevin D. Seppi.
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3.1 Introduction

In problems that require searching for an object of interest, robots can make human efforts

more effective because robots can be more robust to environmental contamination and can

sense things beyond of human capabilities. Designing the interactions between a human and a

robot for search is no longer constrained to Sheridan’s levels of autonomy [106]. Alternatives

to Sheridan’s levels for a search task include interactions where the human manages the

robot either by shaping the information used by the robot to make decisions [70] or by

imposing constraints on robot and then allowing the robot to flexibly plan within those

constraints [16, 28, 70].

In this paper, we consider constraint-based interactions between a human and a robot

for a search task. Rather than consider constraints like no-fly zones or strict waypoints, we

explore path constraints imposed by the human and then allow the robot to deviate from

the path within some specified tolerance. The source of these constraints range from the

robot operating as a “wingman”, to a co-located human searcher, to a human telling the

robot to approximate the shortest path to an object of interest while gathering maximal

information. Furthermore, we assume that the robot’s path-planner operates on a discretized

representation of the environment and that the robot’s sensor footprint covers multiple cells in

the discrete representation. Finally, we assume that the robot’s sensor becomes less accurate

as the distance between the robot and an object of interest grows. These assumptions make

the path-planning problem a constrained version of the submodular orienteering problem on

a graph.

This paper presents an anytime approximate solution to this problem that uses

backtracking to generate an efficient heuristic and an expanding tree. Section 3.3 shows how a

multi-partite graph is generated using the human-path constraint and formulates the problem

into a class of submodular orienteering on a multi-partite graph. Section 3.4 describes the

algorithm in the context of solving the submodular orienteering problem and presents a proof

that the algorithm will always find the optimal solution, given enough time. Section 3.5
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introduces a robot wingman problem to demonstrate the performance and efficiency of the

algorithm.

3.2 Related Work

By modeling the objective of a search task using information measurement, previous work

has focused on planning a path for a robot to maximize information gained in a reasonable

time, especially in a large problem spaces. In a continuous space, a rapidly-exploring random

tree can solve the information maximization path planning problem, and also shows good

efficiency in an online optimization [69]. If there exists a temporal logical constraint, a

receding horizon planning can be used [56].

If the robot’s observation model is a coverage instead of a point, the objective of

the path planning becomes maximum coverage. Maximum coverage is a classic NP-hard

combinatorial optimization problem [80], which includes unignorable overlaps. The total

information of a set of observation coverages is measured by mutual information, which

implies a property of “nondecreasing submodularity” [108]. A greedy approximation with

known performance bound can efficiently exploit the submodularity property of mutual

information [108]. A branch and bound approach can also be used in informative path

planning [13].

Maximizing the reward collected from a limited-length graph walk is usually known

as an orienteering problem [118], in which the total reward is a summation of the rewards of

visited vertices. If the reward function of a vertex has submodularity as in a maximum coverage

problem, the problem is defined as a submodular orienteering problem [24]. Unfortunately in

the submodular orienteering case the location of the robot at time t constrains the reachable

locations at time t + 1. Thus, näıvely applying a greedy algorithm to the submodular

orienteering case, that is, with a “teleport” assumption, yields poor results [64]. For a

generalization of the submodular orienteering problem in which the neighboring constraint

can be converted into a time budget, a recursive greedy algorithm can be applied [24].
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3.3 Problem Statement

In this section we convert a human-path constraint into a multi-partite graph and formulate the

informative path planning problem into a class of submodular orienteering on a multi-partite

graph.

3.3.1 Information maximization path planning

Consider a discretized map of the world formed by a set of cells S and suppose that the

robot moves with constant speed from a cell to its neighbors. In the search task, each cell

in a discretized map is assigned an entropy value to represent the information distribution.

Because the robot’s path must be connected, the robot’s motion is constrained by a graph

topology determined by the cell neighborhood. In a period of time of length T , we denote

the robot’s path as X = [x1, x2, · · · , xT ], and note that this path must satisfy the connection

constraint on the discretized map. We adopt an observation coverage model for the robot,

which means that the robot can observe not only the cell it currently occupies but also

neighboring cells within a given range. Let the observation at time step t be OX
t , which

describes both the observed cells and how well they are observed. Thus the robot’s path, X,

induces a sequence of observations OX = {OX
1 , · · · , OX

T−1, O
X
T }.

We assume that the observation coverage model follows Bayes rule. Thus we can define

the information gain of the robot using mutual information I(S | OX) = H(S)−H(S,OX).

The entropy reduction over the problem space S by the observation OX is the information

gain to the robot.

3.3.2 Human path constraint

As discussed in the introduction, there are several ways that a human can constrain the

robot’s path. Without loss of generality, we adopt a “wingman” approach and assume we

have a model that can predict the human’s path. We denote the human’s T -step path as

Y h = [yh1 , y
h
2 , · · · , yhT ]. We define a neighbor function N() that represents the assumption
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Figure 3.1: How the multi-partite graph is obtained.

Figure 3.2: A multi-partite graph from a human path constraint.

from the introduction that the robot can deviate from a constrained path by no more than a

given tolerance. At each time step, this neighborhood induces the set of visitable cells for the

robot, which is denoted by N(yht ). Figure 3.1 gives an example. By organizing the set of

visitable cells at time t into a partition of vertices, we can construct a multi-partite graph

G = (V,E, T ) from the constrained path. A partition V (t) ∈ V is obtained from the cells in

N(yht ). The edge set E is determined by the neighborhood of each cell from the discretized

map.

Imposing the path constraint Y h, we define the multi-partite graph as follows. Figure

3.2 illustrates how the path constraint induces the multi-partite graph for a notional human

path. Note that a cell in the discretized map might appear in multiple partitions due to

overlaps between sets by N(yht ) at different t.
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Definition 1 (Multi-Partite Graph). The multi-partite graph G = (V,E, T ) is defined as

a graph of T partitions. The vertex set V is defined as V = ∪Tt=1V (t). Each partition V (t) is

a set of vertices vit, where t indicates which partition the vertex x is in and i indicates the

index of this vertex. Edges are directed, originating from vertices in set V (t) to vertices in

set V (t+ 1). Let vit ∈ V (t) and vjt+1 ∈ V (t+ 1). A directed edge (vit, v
j
t+1) connects vertices

vit and vjt+1.

In order to guarantee that the search process on a multi-partite graph G = (V,E, T )

always ends with a path of length T , we use a pruning process to ensure that each vertex can

be reached from the previous partition and is connected to a vertex in the next partition. The

pruning process includes a forward pruning and a backward pruning. The forward pruning

traverses from partition V (2) to partition V (T ) and removes any vertex that has no incoming

edge; all edges incident to this vertex are also removed. The backward pruning traverses

from partition V (T − 1) to partition V (1), and removes any vertex that has no outgoing

edge; all edges incident to this vertex are also removed.

3.3.3 The Optimization Problem Model

Without loss of generality, we assume all paths start from the same vertex. Thus, we have

only one vertex in partition V (1), as illustrated in Figure 3.2. Because the objective of the

path-planning problem is to maximize mutual information, and because mutual information is

a submodular function [108], we find it convenient to shift from the bulky notation for mutual

information, I(S; OX), to the more concise notation of a general submodular function, f(X).

Because the mutual information I(S; OX) is independent of the sequence of the vertices in a

path, we write X as a set in f() for simplicity. f() supports multiple vertices representing the

same cell, which is like choosing same position multiple times in a sensor coverage placement

problem.

The objective of the search task is to maximize information gain subject to the path

constraint. Since the path constraint is encoded as the multi-partite graph, we can restate
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the objective as maximizing information gain on the multi-partite graph. This yields a

submodular orienteering problem on a multi-partite graph G = (V,E, T ), which is given as

Objective :X∗ = arg max
X

f(X);

Constraint :|X| = T, xt ∈ V (t), (xt, xt+1) ∈ E.
(3.1)

Exhaustive search could find the optimal path but the time-complexity of such a

search makes this unacceptable in all problems except in small problems. A greedy search is

efficient but the performance of greedy search on a submodular problem is not guaranteed

given a topological constraint [64]. Instead of a greedy heuristic, we develop an alternative

heuristic based on the property of mutual information.

Mutual information has two desirable properties that we exploit. First, it is indepen-

dent of the sequence of vertices on a path and, second, it follows a chain rule. This chain rule

property can be written as f(x1, x2, · · · , xT ) = f(x1) +f(x2 | x1) + · · ·+f(xT | x1, · · · , xT−1),

which yields a structured Bellman-like equation x̂t = arg maxXt [f(xt | x1, · · · , xt−1) +

maxXt+1,··· ,XT f(xt+1, · · · , xT | x1, · · · , xt)]. These structures lead to two key terms: maximum

future reward and maximum total reward.

Definition 2 (Maximum Future Reward). Define the maximum future reward as

h(x1, · · · , xt′) = max
V (t′+1),··· ,V (T )

f(xt′+1, · · ·xT | x1, · · · , xt′),

given the topology constraint ∀τ ∈ {t′ + 1, · · · , T}, xτ ∈ V (τ) and ∀τ ∈ {t′ + 2, · · · , T −

1}, (xτ−1, xτ ) ∈ E.

Definition 3 (Maximum Total Reward). Define the maximum total reward from choosing

xt after x1 · · · , xt′ have been chosen as, ∀t > t′,

u(xt | x1, · · · , xt′) = f(xt | x1, · · · , xt′) + h(x1, · · · , xt′ , xt).
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If we could obtain the values u(xt | x1, · · · , xt′), then we could greedily chose values for

x̂t as those that maximize u() ; this would yield an optimal solution as x̂t → xt. Unfortunately,

the calculation on u(xt | x1, · · · , xt′) is hard due to the submodularity of f() and the topology

constraint. In the next section, we present a heuristic for u() that yields good performance

in empirical studies.

3.4 Approximate Anytime Solution

In this section, we use backtracking to estimate the maximum total reward and use this

estimate as our search heuristic. We then use an expanding tree to create an anytime

algorithm approximate solution to the submodular orienteering problem on the multi-partite

graph.

3.4.1 Using the Search Heuristic from Backtracking

In a graph search process, if a sub-path {v1, · · · , vt′} has been visited, we can use the following

property to approximate the maximum future reward.

Property 1.

h(x1, · · ·xt′) = max
xt′+1∈V (t′+1)∧(vt′ ,xt′+1)∈E

u(xt′+1 | x1, · · · xt′).

Property 1 implies that the maximum future reward at partition V (t) can be estimated

from the maximum total reward at partition V (t+ 1). This means that the maximum total

rewards could be estimated by using a backtracking process. We propose a backtracking

process in Algorithm 1.

Algorithm 1 estimates the maximum total rewards of the vertices in V (t′ + 1). The

backtracking starts at partition V (T ) and goes back to V (t′ + 1) in order to propagate

the estimated maximum future rewards. For a vertex v(t), the maximum future reward is

estimated based on the estimated maximum total rewards of all the connected vertices in
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Algorithm 1 BT({v1, · · · , vt′}, G) - Backtracking

Input: a sub-path {v1, · · · , vt′}, and multi-partite graph G = (V,E, T )
Output: û(v1, · · · , vt′ , vt′+1),∀vt′+1 ∈ V (t′ + 1)

1:

2: for t = T : −1 : t′ + 1 do
3: for vt ∈ V (t) do
4: if t == T then
5: û(vT | v1, · · · , vt′) = f(vT | v1, · · · , vt′)
6: else
7: ĥ(v1, · · · , vt′ , vt) = maxxt+1∈V (t+1)∧(vt,xt+1)∈E û(xt+1 | v1, · · · , vt′)
8: û(vt | v1, · · · , vt′) = f(vt | v1, · · · , vt′) + ĥ(v1, · · · , vt′ , vt)

return û(v1, · · · , vt′ , vt′+1),∀vt′+1 ∈ V (t′ + 1)

partition V (t + 1). The estimated total reward is then obtained by adding the estimated

instant reward of v(t) with the estimated maximum future reward of v(t). The backtracking

process in Algorithm 1 satisfies Lemma 1.

Lemma 1. “Backtracking” in Algorithm 1 never underestimates the maximum total reward,

which means

∀t ≥ t′, û(xt | v1, · · · , vt′) ≥ u(xt | v1, · · · , vt′). (3.2)

Proof. The proof is given in Appendix 3.6.

Note that Lemma 1 holds even when there are multiple vertices in a multi-partite

graph generated from same cell. This is because the submodularity of f() is preserved and

the proof depends primarily on submodularity. However, multiple vertices generated from

same cell in a path increase the degree to which the reward is overestimated.

3.4.2 Expanding Tree Search

Since the heuristic is not guaranteed to produce an optimal solution, we create an anytime

algorithm that allows us to continue the search process until a time limit is exceeded or the

search is completed exhaustively. In order to track the anytime search process, the algorithm

uses an expanding tree. The expanding tree is the tree produced by repeated depth-first

traversals of the multi-partite graph [96].
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Definition 4 (Expanding Tree). An expanding tree GT = (N,L, T ) obtained from a multi-

partite graph G = (V,E, T ) is the tree produced by a depth first traversal of G. T is the depth

of the tree, which is determined by the number of partitions in a multi-partite graph G. N is

the node set. Each n
i(j)
t ∈ N indicates the relevant vertex in the multi-partite graph G, in

which t shows the index of the time partition, i shows the index of the corresponding vertex

from within that partition and (j) shows the index of a vertex in V (t− 1) that has an out

edge to vertex i. L is the directed link set. (n
i(k)
t , n

j(i)
t+1) ∈ L is determined by (vit, v

j
t+1) ∈ E.

We assign the type to each node, which are New (a node has been created but not

expanded), Expanded (a node that has all child nodes created) and Frozen (a node that has

been created but will not be expanded). Each path in an expanding tree is derived from

a unique depth-first traversal of the corresponding mutli-partite graph. We use v(n
j(i)
t+1) to

denote a vertex mapped from a node. For a node n
i(j)
t , we use path(n

i(j)
t ) to denote the

implicit path from the start position to the corresponding vertex of the multi-partite graph,

the cardinality of which is t.

We can now present Algorithm 2 for a single search iteration. It is used as one run in

the anytime framework.

Algorithm 2 NERB(nt′ , G,GT ) - Node Expanding with Recursive Backtracking

Input: Expanding Node nt′ , Multi-partite graph G = (V,E, T ), Expanding tree GT =
(N,L, T )

Output: solution of a complete path
1: solution = path(nt′)
2: for t = t′ : 1 : T − 1 do
3: Create all child(nt′) = {nt′+1 | v(nt′+1) ∈ V (t′ + 1) ∧ (v(nt′), v(nt′+1)) ∈ E}
4: Add child(nt′) as the child nodes of nt′
5: nt′ .state = Expanded
6: û(vt′+1 | path(nt′)) = BT(path(nt′), G)
7: n̂t′+1 = arg maxnt′+1∈child(nt′ )

û(nt′+1 | path(nt′))
8: solution = solution

⋃
{n̂t′+1}

return solution
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3.4.3 Adding node freeze to the expanding tree

Because Lemma 1 tells us that the backtracking process never underestimates the maximum

total reward of a node, we can use the estimated maximum total reward of a node to evaluate

whether the node might lead to a path that returns a bigger reward than the current best

one. A node is not in a path that has bigger reward if its estimated value is smaller than the

current best solution. We can freeze this node, which means that we are not going to expand

any of its descendant nodes. At each iteration we find a new solution, we can call a node

freeze process to update the states of the nodes in the expanding tree. This process is given

in Algorithm 3.

Algorithm 3 NF(GT , θ
∗) - Node Freeze

Input: an expanding tree GT = (N,L, T ), the reward of found maximum reward path θ∗

1: for nt ∈ N And nt.state == New do
2: if f(path(nt)) + ĥ(path(nt)) ≤ θ∗ then
3: nt.state = Frozen

Algorithm 4 combines Algorithm 1, Algorithm 2, and Algorithm 3 to yield the anytime

algorithm. The expanding tree starts with just a root node, which is the start vertex. When

a node is created, the state of the node is New. Expanding a node in Algorithm 4 means

creating all of its children nodes and changing the state of this node to Expanded. When a

child node is created, the estimated maximum total reward is calculated using Algorithm 1

and stored. Each run of Algorithm 2 returns a complete path as a solution. When a new

complete path has been returned, the freeze process defined in Algorithm 3 is executed by

checking estimated maximum total rewards stored in each nodes in the state of New. The

next run of the search starts from the N ew node nt that has the largest estimated reward

f(path(nt)) + ĥ(path(nt)). Starting from this node, the next call to Algorithm 2 generates

another complete path. This anytime algorithm stops at a pre-specified number of iterations

or when there is no New node remaining.

Algorithm 4 is optimal as shown in Theorem 1 given here.
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Algorithm 4 Anytime Algorithm Framework

Input: Expanding Tree GT = (N,L, T ), and multi-partite graph G = (V,E, T );
1: Initial expanding tree Gt(N,L, T ) with v1 as root node
2: maxPath = NULL, newPath = NULL
3: n′ = GT .root
4: while n′! = NULL do
5: newPath = NERB(n′, G,GT )
6: if (f(newPath) > f(maxPath)) then
7: maxPath = newPath
8: post maxPath

9: NF(GT , f(maxPath))
10: n′ = arg max{n|n∈N∧n.state==New }(f(path(n)) + ĥ(path(n)))

Theorem 1. The anytime algorithm framework in Algorithm 4 can always find an optimal

solution given enough time.

Proof. The proof is by contradiction and is similar in spirit to the proof of optimality for the

well-known A* algorithm. Since Algorithm 4 keeps expanding until no New nodes remain, as

long as any node in the optimal path will never be frozen, the search will reach the optimal

terminal node.

Assume that one of the nodes n∗t in the optimal path can be frozen. This means that

f(path(n∗t ) + ĥ(path(n∗t ))) ≤ f(path(n′T )), in which n′T is another terminal node but not the

terminal node for the optimal path. As a result, when n′T has been reached, it will freeze

node n∗t .

However, since node n∗t is in a path to an optimal terminal node, f(path(n∗t )) +

h(path(n∗t )) > f(path(n′T )). Also we have f(path(n∗t )) + ĥ(path(n∗t )) ≥ f(path(n∗t )) +

h(path(n∗t )) by Lemma 1. Thus we have f(path(n∗t )) + ĥ(path(n∗t ) > f(path(n′T )), which is a

contradiction.

Therefore, a node in a path to an optimal terminal node will never be frozen by any

non-optimal terminal node.
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Figure 3.3: A Robot Wingman Framework.

3.5 An Application to Robot Wingman

In this section, we apply Algorithm 4 to the robot wingman problem [42]. Let Rflank denote

the flank support range, which determines the area that a robot wingman is expected to stay

in when a human is moving; this is illustrated in Figure 3.3. The robot wingman constraint

requires that ∀t, ||xt − yht || ≤ Rflank or, equivalently, ∀t ∈ T, xt ∈ N(yht ).

Consider a two-dimension search space discretized into a world of hexagonal cells. This

discretization gives a constant distance from the center of one cell to any of its immediate

neighbors, which facilitates modeling the agent observation range. Moreover, a hexagonal

tessellation is consistent with the assumption that we made that the robot would move at

constant speed from one cell to another; in a hexagonal tessellation, the distances between

the centers of all neighboring cells and the current cell is constant.

The observation model of an agent uses the likelihood of detecting an object of interest

in cell i and follows Bayes rule in updating the posterior [42]. Since we know the human’s

path, Y h, we can use the human’s observation model to predict what the human could

observe and update the prior distribution of information to reflect this. The simulation

results we present assume that human observations have already been factored into the prior

distribution of information.
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3.5.1 Performance

We simulate the use of the algorithm in a search space in which the entropy of each cell is

randomly generated. The simulation results are aggregated from 20 runs of each case. The

parameters Rflank = 2 is used for the neighboring function of the human path constraint and

Rrobot
obs = 2 is used for the robot’s observation range.

We use a “fully expanded tree size” to measure the problem size, which depends

on the planning length and the vertex connectivities. Due to the human constraint, the

planning length is determined by the human’s path length. The performance of the heuristic

is measured by the percentage of optimal at first iteration, that is a percentage computed

from the value obtain in the first iteration of Algorithm 4 over the optimal value. High values

of this metric indicate that the heuristic is useful. The greedy heuristic [108], which chooses

the maximum next step, is imported to compare with the backtracking heuristic. Figure 3.4

shows the comparison between two types of heuristic on the percentages of the optimal as a

function of planning lengths. We can see that the performance of the backtracking heuristic

significantly surpasses that of the greedy heuristic.

Naturally, as the size of the search space expands, the difficulty in finding the optimal

solution using an exhaustive search grows. Since we want to understand how well our anytime

algorithm performs for problems that are too big to search exhaustively, we bound the payoff

for the optimal path by using a “teleport” search in which the robot can bounce from region

to region without following a connected path. Figure 3.5 shows the rewards collected using

the path produced by the backtracking heuristic normalized by the rewards collected by

the“teleport” path for large search spaces. Again, the backtracking heuristic is much better

than the greedy solution (similarly normalized).

We use percentage of nodes explored to indicate the efficiency of the anytime algorithm

framework. In particular, we are interested in whether freezing nodes improves search

efficiency. Figure 3.6 shows that the percentage of nodes explored decreases significantly

when the problem size is expanded. Since the anytime algorithm becomes an exhaustive
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Figure 3.4: The performance comparison between the backtracking heuristic and the greedy
heuristic.

Figure 3.5: The performance comparison between the backtracking heuristic and the greedy
heuristic in a large problem space.

53



www.manaraa.com

Figure 3.6: Problem size and exploration ration with different planning lengths.

Figure 3.7: Percentages of optimal at first iteration and number of iterations reaching optimal
with different planning lengths.

search in the absence of freezing nodes (and hence follows the size of the search space in the

figure), this figure indicates that the percentage of nodes expanded is significantly decreased

by freezing nodes. In the anytime algorithm, the exploration might not stop when the optimal

is found, due to the existence of overestimation. If current best of a search can reach the

optimal very quickly, it means that a best solution found in a fixed time has high probability

of being optimal. We use number of iterations reaching optimal (normalized) to measure this

optimal search capability of Algorithm 4. Figure 3.7 illustrates that the anytime algorithm

can find the optimal solution relatively quickly.

3.5.2 Robustness

We extend the search environment from random to uniform and multimodal. Uniform

indicates that the entropies in different cells are identical, and multimodal indicates that the
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Figure 3.8: Performance in different types of environments.

(a) Line. (b) Spiral. (c) Lawn-
mower.

(d) Arc. (e) Loitering.

Figure 3.9: Different patterns of human path.

entropy distribution among cells is a multi-modal spatial distribution. Figure 3.8 shows that

Algorithm 4 consistently performs well in different types of search environment.

In order to illustrate how well Algorithm 4 adapts to different human path constraints,

we introduce five common patterns of paths executed by a human in a search task, which are

line, spiral, lawn-mower, arc and loitering. Figure 3.9 shows examples on these five patterns.

Due to the wingman constraint, different human paths lead to different problem sizes and

different ratios of overlap in the coverage at two different time steps. For this comparison we

hold the number of time steps fixed at 11 over different patterns as in Figure 3.9.

Figure 3.10 shows that the problem size varies significantly depending on the type

of path, though the planning length is identical. Interestingly, Algorithm 4 shows better

efficiency in larger problem size. In Figure 3.11, we can see that the ratios of explored nodes

are relatively smaller in the patterns of “spiral”, “lawn-mower” and “loitering”, in which the

problem sizes are relatively larger in Figure 3.10. We can see that the percentage of optimal

at first iteration are all close to the optimum in all the patterns in Figure 3.12, which implies

the goodness of the backtracking heuristic.
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Figure 3.10: Problem size in different patterns of human paths.

Figure 3.11: Exploration ratios in different patterns of human paths.

Figure 3.12: Percentages of optimal at first iteration in different patterns of human paths.
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3.6 Summary

In this paper, we use a human path to form a path constraint and seek to maximize the

information gathered by a robot gathered in a search task. The resulting information

maximization path planning is identified as a constrained submodular orienteering problem

on a multi-partite graph. We present an anytime algorithm that used a planning heuristic

based on backtracking to efficiently find a high quality path. We use a node freeze process to

avoid an exhaustive search, yet we prove that this process always preserves the ability of the

algorithm to find an optimal solution. We have also shown empirically that this approach

substantially reduces the complexity of the resulting search.

Appendix

Proof of a Useful Property

The following property is necessary to prove Lemma 1.

Property 2.

u(xt |x1, · · · , xt′) = f(xt | X̃(xt), x1, · · · , xt′)

+ max
xt+1∈V (t+1)∧(xt,xt+1)∈E

u(xt+1 | x1, · · · , xt′),
(3.3)

in which

X̃(xt) = arg max
V (t+1)···V (T )

f(xt+1 · · ·xT | x1, · · · , xt′) (3.4)

subject to the constraint

∀τ ∈ {t+ 1, · · · , T}, xτ ∈ V (τ) ∧ (xτ−1, xτ ) ∈ E. (3.5)

Proof. By chain rule, we have u(xt | x1, · · · , xt′) = f(X̃(xt) | x1, · · · , xt′)+f(xt | x1, · · · , xt′ , X̃(xt)).

By decomposing the constraint in (3.5) into xt+1 ∈ V (t + 1) ∧ (xt, xt+1) ∈ E and ∀t′′ ∈

[t + 2, T ], x(t′′) ∈ V (t′′) ∧ (xt′′−1, xt′′) ∈ E, equation (3.4) can be f(X̃(xt) | x1, · · · , xt′) =
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maxVt+1 u(xt+1 | x1, · · · , xt′) subject to the constraint xt+1 ∈ V (t+ 1) ∧ (xt, xt+1) ∈ E. Thus

equation (3.3) can be obtained.

Proof of Lemma 1

Proof. Equation (3.2) can be proven using induction as follows. We have following two

propositions, corresponding to the basis case and induction step, which are

• proposition 1 ∀xT ∈ V (T ), û(xT | v1, · · · , vt′) = u(xT | v1, · · · , vt′);

• proposition 2 If ∀xt+1 ∈ V (t + 1), û(xt+1 | v1, · · · , vt′) ≥ u(xt+1 | v1, · · · , vt′), then

∀xt ∈ V (t), û(xt | v1, · · · , vt′) ≥ u(xt | v1, · · · , vt′).

Basis: At time T , we have u(xT | v1, · · · , vt′) = f(xT | v1, · · · , vt′) and û(xT |

v1, · · · , vt′) = f(xT | v1, · · · , vt′). Thus proposition 1 is true.

Induction Step: The definition of u(xt | v1, · · · , vt′), Property 2, and the definition

of û(xt | v1, · · · , vt′) in Algorithm 1, imply

û(xt | v1, · · · , vt′)− u(xt | v1, · · · , vt′) = [f(xt | v1, · · · , vt′)− f(xt | v1, · · · , vt′ , x̃t+1, · · · x̃T )]

+[ max
xt+1∈V (t+1)∧(xt,xt+1)∈E

û(xt+1 | v1, · · · , vt′)− max
xt+1∈V (t+1)∧(xt,xt+1)∈E

u(xt+1 | v1, · · · , vt′)].

(3.6)

By submodularity, we know that f(xt | v1, · · · , vt′)− f(xt | v1, · · · , vt′ , x̃t+1, · · · x̃T ) ≥ 0.

Define the following two values

xat+1 = arg max
xt+1∈V (t+1)∧(xt,xt+1)∈E

û(xt+1 | vt′ , · · · , v1)

xbt+1 = arg max
xt+1∈V (t+1)∧(xt,xt+1)∈E

u(xt+1 | v1, · · · , vt′).

Both xat+1 and xbt+1 belong to the set of vertices that satisfy the constraint xt+1 ∈ V (t+ 1) ∧

(xt, xt+1) ∈ E. Since xat+1 is the answer to arg max û(·), we have û(xat+1 | v1, · · · , vt′) ≥ û(xbt+1 |

v1, · · · , vt′). By the induction hypothesis, û(xbt+1 | v1, · · · , vt′) ≥ u(xbt+1 | v1, · · · , vt′). By tran-

sitivity, we have û(xat+1 | v1, · · · , vt′) ≥ u(xbt+1 | v1, · · · , vt′). By the definitions xat+1 and xbt+1,
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which equals to maxxt+1∈V (t+1)∧(xt,xt+1)∈E û(xt+1 | v1, · · · , vt′)−maxxt+1∈V (t+1)∧(xt,xt+1)∈E u(xt+1 |

v1, · · · , vt′) ≥ 0. Thus proposition 2 is true.

Conclusion: Since the basis case and induction step are true, Equation (3.2) follows.
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Chapter 4

Supporting Task-oriented Collaboration in Human-Robot Teams using

Semantic-based Path Planning 1

Abstract

Improvements in robot autonomy is changing the human-robot interaction from low-level

manipulation to high-level task-based collaboration. For a task-oriented collaboration, a

human assigns sub-tasks to robot team members. In this paper, we consider task-oriented

collaboration of humans and robots in a cordon and search problem. We focus on a path-

planning framework with natural language input. By the semantic elements in a shared

mental model, a natural language command can be converted into optimization objectives.

We import multi-objective optimization to facilitate modeling the “adverb” elements in

natural language commands. Finally, human interactions are involved in the optimization

search process in order to guarantee that the found solution correctly reflects the human’s

intent.

1Published in Proc. SPIE 9084, Unmanned Systems Technology XVI, 90840D. Authors are Daqing Yi
and Michael A. Goodrich.
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4.1 Introduction

As robot sensing, perception and decision-making improves, the human’s role in human-robot

interaction progressively shifts from teleoperator to supervisor to teammate [103]. This shift

toward human-robot teaming means that the relationships between the human and the robot

in a team to execute tasks together appear more and more to be collaboration. Although

there exists asymmetries between the capabilities and properties of a human and a robot,

concepts from human-human teaming can be useful and important. Specifically, the concept

of a shared mental model, which originates from the theories of human collaboration, has

been applied to analyze the collaborative process between humans and robots as well [68].

Human

Robot

Figure 4.1: An example of task-oriented human-robot collaboration.

Consider a problem where team-wide collaboration is driven by a task shared by the

team members. The collaboration can be viewed as a parallel performance of the sub-tasks

by different agents. This type of collaboration can be modeled as a task decomposition.

In this type of models, the team supervisor takes the responsibility of task decompositions

and distributes the sub-tasks to different team members. In a human-robot team, the team

supervisor is usually a human. Figure 4.1 illustrates an example on task decomposition and

allocation. A human supervisor decomposes the task into sub-tasks and then assign some to

human team members and some to robot team members.

This type of relationship indicates the importance of the communication between a

human and a robot. Effective communication determines the execution efficiency and the

correctness of the outcome. One of the functions of the shared mental model is to facilitate the
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mutual understanding and ground communication among the team members. Of particular

importance is how shared mental models enable a more collaborative approach to problem

solving, facilitated by communications that operate at a higher, more tactical or strategic

level of abstraction. A complex process of parameter setup for a human to define a sub-task

will reduce the team performance in a cordon and search task [42].

In a cordon and search problem, a robot could be assigned to “screen” a sub-region

that is not easily accessible to a human. Instead of relying on teleoperation, the robot now

can be autonomous enough to execute the sub-task alone. In the collaborative perspective,

the human only needs to express the requirements of the sub-task and provide information

that the robot needs in sub-task execution. In this paper, we assume that the team supervisor

assigns the sub-tasks using a verbal command. More specifically, we assume that the human

supervisor issues directives to a robot. Furthermore, we assume that from a small set

of possible commands, the directives are grounded using spatial references that specify

key locations for performing specific sub-tasks. Finally, we assume that the directives are

associated with a small number of adverbial modifiers that provide qualitative information

about intent.

This does not require the robot to understand perfectly what the human said, but

rather to model the verbal command. The semantic elements in natural languages are often

extracted and formed into a graphical model, Bayesian inference can be applied to infer the

meaning of a sentence [112]. A learning process can also be imported to tune the likelihood

of the primitives by using an HMM [79]. For tasks like cordon and search, plenty of the

elements in a sentence depend on the spatial information in the workspace. Thus, spatial

labeling is imported to help convert a human’s command into robot’s navigation primitives

[63]. This enables robot motion planning to be generated by a semantic interpreter [40]. In

this paper, we are interested in modeling and solving a robot path-planning problem from a

human’s verbal command in a framework of task-oriented human-robot collaboration.
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Current technologies can already support the language parsing process. A semantic

structure is usually composed of the key elements of a sentence, like a noun, verb and etc.

Ignoring some other elements leads to information loss. When researchers consider adverbial

cues in human languages, an adverbial modifier may be modeled as belief revision [19]. We

notice that a verbal command contains information not only what to do but also how to do.

It means that we should extract the search objectives and constraints from a verbal command

to obtain the criteria. The criteria evaluates the performance of a sub-task execution.

In this paper, we propose a framework to support the path-planning problem from a

verbal command. Using the idea of a shared mental model, we import a semantic labeling

process to generate a semantic model of the workspace in Section 4.2. The labeled elements

can be used to help the teammate interaction and task execution. Specifically, we show how

an optimization problem can be created by translating a verbal command. We are interested

in extracting information, like adverb elements, to create the multi-objective optimization in

Section 4.3. We propose an interactive method to find the optimal solution of a path-planning

problem. In Section 4.4, we propose the system framework and the solutions on the robot

path-planning.

4.2 Semantic labeling and command

A shared mental model provides a common ground among the teammates of the collaborative

process. When the interaction between a human and a robot is based on natural language,

the semantic objects must be shared by the team members so that the teammates can

understand each other. In a cordon and search task, the information depends greatly on the

semantic labels of spatial objects. It is natural to introduce a labeling process to generate

the semantic objects on the map of the workspace. These semantic labels will be used in

sub-task definitions and teammate interactions in the shared mental model. We also need a

task grammar to define the sub-tasks and organize the semantic elements. Because terms and

sentences usually imply different meanings in different types of sub-tasks, a task grammar
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Shared mental model

Teammate model Team interaction model Team task model

role assignment

subtask distribution

teammate position

task
grammar

semantic
label

verbal command

information sharing

world model

sub-task definition

Representation

Figure 4.2: How task grammar and semantic labels support a shared mental model.

could help the teammates understand the purposes of each other correctly. In this way, a

verbal command can be viewed as an action with logical constraints on a set of semantic

elements. The form is determined by the task grammar.

A shared mental model of a cordon and search team can be decomposed [42] into

three sub-models. We list only some elements that are relevant with a cordon and search

task as following.

• A teammate model provides the knowledge of teammates skills, abilities and ten-

dencies.

– A sub-task distribution indicates how the sub-tasks are assigned to team members.

– The teammate positions indicate the positions of the teammate, localized relative

to the spatial semantic objects.

– The representation indicates how the teammate encodes information and problems.

• A team interaction model provides the knowledge of roles, responsibilities, informa-

tion sources, communication channels and role interdependencies.

– A role assignment defines the roles of the members in a team.

– A verbal command describes the format of a command.

– An information sharing represents the information exchange format between team

members.
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A team task model provides the knowledge of procedures, equipment, situations,

constraints.

– A semantic world model is a representation of the workspace with semantic labels.

– A sub-task definition defines the sub-tasks and its objectives.

Figure 4.2 illustrates how these elements in a shared mental model depend on the task

grammar and the semantic labels. The task grammar and semantic labels support the world

model and the sub-task definitions. The world model and the sub-task definitions can then

be used to generate verbal commands and help information sharing.

Consider the cordon and search for a human-robot team in an urban area. The

labeling process is run before the cordon and search starts. Semantic labels are assigned to

the sub-regions and the objects in the map. Supplementary information can be attached

to expand the support to different tasks. We also expect that semantic labels are used to

support a more flexible grammar. We categorize the labels into three types.

• Indoor The “indoor” label defines the region of an indoor environment in the search

space.

• Outdoor The “outdoor” label defines the region of an outdoor environment in the

search space. There are several sub-types on an outdoor label. For the purpose of this

paper, we consider only three.

– market : The “market” label usually defines sources of information, where there is

high probability of interested events occurring.

– unknown: The “unknown” label indicates lack of prior knowledge. This implies

that these regions have potential risks.

– normal : We usually consider unlabeled regions as “normal” by default, which

indicate that there is nothing special to be noticed in these regions.
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• Feature The “feature” label defines the objects in the search space. They can be used

for objects of interest, location indicators and etc. This will be used for There are two

types of feature labels, which are

– 2D : “2D” label defines the objects on the ground.

– 2.5D : “2.5D” label defines the objects on the walls of the architectures.

Figure 4.3 illustrates possible semantic labels for a notional world.

Figure 4.3: A labeled map of an urban environment.

Given the semantic labels of a spatial world model, we can define a task grammar by

the characteristics of the sub-tasks. We assume a task grammar that specifies a task, one or

more constraints, and one or more adverbs that specify how the task should be performed or

how the constraints should be managed. Equation 4.1 is an example of a task grammar that
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is used in a cordon and search task.

< Start >→ < CommandPhrase >

< CommandPhrase >→ < ScreenCommand >|< ProceedCommand >

< ScreenCommand >→ < Adverb > Screen the < FeatureQuantifier >

< Feature > of the < BlockId >

< ProceedCommand >→ Proceed < Adverb >< PrepPhrase > to the

< FeatureQuantifier >< Feature > of the < BlockId >

< Adverb >→ covertly | safely | quickly | carefully

< FeautreQuantifier >→ back | front | side

< Feature >→ door | window | exits

< BlockType >→ BD- | OB-

< PrePhrase >→ < PrepSegment > the < BlockId >| between the

< BlockId > and the < BlockId >

< BlockId >→ < BlockType >< Id >

< PrepSegment >→ around | left-of | right-of

(4.1)

For example, if a human tells a robot to “carefully screen the OB-2”, this command

defines a sub-task as a “screen” action. “OB-2” is a semantic label, which constrains the task

to specific work region. Besides what to do in a sub-task, this verbal command also implies

how to evaluate the performance of this sub-task. Some of the objectives inherits from the

properties of a screen action, the other objectives are from the adverb, e.g. “carefully”. This

turns the path-planning problem in the sub-task into a multi-objective optimization problem

as described in the next section.
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4.3 Interactive multi-objective optimization

The adverb in a sentence can be very important and informative. In a cordon and search

task, using “carefully”, “quickly” or “covertly” imply very different ways of performing

the task. More generally, a verbal command from a human contains multiple objectives

and constraints, which means that the robot’s path-planning problem is a multi-objective

optimization problem. Table 4.1 gives an example on different objectives implied by different

adverbs in cordon and search. Four adverbs indicate different objectives that the robot’s

path planner may need to respect.

Table 4.1: Different objectives implied by different adverbs.

Adverb Covertly Safely Quickly Carefully

Objectives

min visibility

max smooth-
ness

min exposure

min danger

min path
length

max smooth-
ness

min collision
risk

Notice, as illustrated in Table 4.1, that the robot requires a precise definition so that

the problem is mathematically solvable. By contrast, a human may convey and process the

information in fuzzier terms. In terms of the representation element of the teammate model,

this means that there is a mismatch between the human and the robot. More specifically,

there is a mismatch between the precise mathematical objectives required by the robot and

the possibly ambiguous adverbial modifier specified by the human. To solve such a problem,

we propose a posterior method that allows the robot to specify a range of possible solutions,

and allows the human to select from this range.

Specifically, we use the notion of Pareto optimality to evaluate the solutions in a

multi-objective optimization problem. A solution is called “Pareto optimal” if no other

solution has better fitness values in all the objectives. This means that a Pareto optimal
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Objective 1

Objective 2

Pareto front

Huaman interaction

Human Interaction

Figure 4.4: Interactive multi-objective optimization.

solution cannot be improved on one objective without downgrading other objectives. A set

that consists of all the Pareto optimal solutions is a Pareto front. Figure 4.4 illustrates a

Pareto front for a minimization problem.

The task grammar from Section 4.2 allows two different types of information to be

shared among the human supervisor and the robot: the specific task to be performed (encoded

as the verb and noun) and an adverbially qualifier on how the task should be performed. The

verb and noun specify hard constraints that must be satisfied by the solution generated by

the robot’s path planner. By contrast, the adverbial modifier represents a soft constraint

that the path should satisfy.

We assume that the soft constraint is fuzzy, meaning that there are several possible

paths that would satisfy the soft constraint, and selecting from among these possible paths.

requires an ability to balance various tradeoffs. The Pareto front represents all possible

tradeoffs, so a specific adverbial modifier does not specify a single point in the Pareto front,

but rather a region of the Pareto front; any solution within this region might match the

human’s intent. This is illustrated on Figure 4.4 as the shaded ovals. We are developing a

tool that allows a human to interactively explore this region to select a path that balances
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tradeoffs which satisfy human intent. This tool bridges the difference between the way a

human and a robot represent a task, and thus facilitates more effective shared mental models.

In terms of the robot’s path planner, since the solutions generated from the multi-

objective planner are Pareto optimal, information communicated from the planners to the

human allow the human to refine their intent by selecting among these tradeoffs. We introduce

this interactive multi-objective optimization to solve the path planning problem modeled

from a human verbal command.

Unfortunately, the solution space of a path planning has been greatly expanded. This

increases the difficulty of solving the multi-objective optimization problem. Following related

work on blending metric-based and topological approaches to path planning, we are developing

a robot path representation using waypoints and trajectories that connect two neighboring

waypoints. This enables a two layer planning in order to enhance the planning efficiency:

• A coarse layer generates the waypoints.

• A fine layer generates the trajectories between the waypoints.

The planning in both layers follow the same objectives and constraints.

When we have a shared mental model with semantic labels and a path planner that

solves the multi-objective optimization problem, we can provide an efficient framework of

optimized path-planners that can be flexible and adaptive to new forms of objective definitions

from new scenarios and new information sources.

4.4 System framework

We propose the system flow shown in in Figure 4.5. Either the human supervisor or an

automated object recognizer labels the search space to initialize a shared mental model.

With the shared mental, a parse converts a verbal command from the human into a sub-

task abstraction for robot. In the path planning problem, this abstraction is encoded as

a mathematical model of the optimization problem. Each adverb in the task grammar is
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associated with a different planning objective. The path planner generates the set of Pareto

optimal solutions and the human selects one that matches his/her intent. After a solution is

found, it is sent to a robot to execute.

Command
parser

Environment
Labeling

Shared mental model

Path planner

Sub-task
abstraction

Human

Interactive
decision
making

Robot

Figure 4.5: The process of a semantic-based path planning.

We are currently developing tools to test our approach. The map of a workspace is

firstly labeled by a supervisor. A labeled map is shown in Figure 4.3. We assign semantic

IDs to different sub-regions by using “indoor” and “outdoor” labels. We label the doors and

windows of several regions, which are frequently used in the verbal commands of a cordon and

search task. Moreover, we label some significant objects on the ground to facilitate localizing

the positions of task execution. Within the labeled map, a verb command, “go quickly to

location TR1-OB-2”, is read and parsed into multi-objectives and constraints by the task

grammar. A path planner finds an “optimal” solution through interactive multi-objective

optimization. The path is modeled as a sequence of waypoints. Before implementing on a

real robot, we test the task execution in the Stage simulator by using a virtual robot, which

are illustrated in Figure 4.6b and 4.6c. A execution monitor GUI, shown in Figure 4.6a,

displays the sequence of waypoints of a planned path and continuously receives the position

updates from the virtual robot, which is used to check how the task is executed. The process

is shown in Figure 4.6.
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(a) Planned path execution monitor. (b) 2D view on Stage simulator.

(c) 3D view on Stage simulator.

Figure 4.6: Simulation with the Stage simulator.
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4.5 Summary

In order to support the task-oriented collaboration in a human-robot team, natural language

can be used for the interaction between the human and the robot. A shared mental model is

needed for the collaboration to help the team members understand each other correctly. The

shared mental model is initialized through a semantic labeling process. With a labeled world

model and a task grammar, a robot can translate a verbal command from the supervisor

into a multi-objective path planning problem. A human interactive decision making process

is introduced to find the preferred solution and correct the potential bias from the problem

modeling. The planned path can be interactively obtained from the Pareto solution set.
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Chapter 5

MORRF*: Sampling-based Multi-Objective Motion Planning 1

Abstract

Many robotic tasks require solutions that maximize multiple performance objectives. For

example, in path-planning, these objectives often include finding short paths that avoid

risk and maximize the information obtained by the robot. Although there exist many

algorithms for multi-objective optimization, few of these algorithms apply directly to robotic

path-planning and fewer still are capable of finding the set of Pareto optimal solutions. We

present the MORRF* (Multi-Objective Rapidly exploring Random Forest*) algorithm, which

blends concepts from two different types of algorithms from the literature: Optimal rapidly

exploring random tree (RRT*) for efficient path finding [59] and a decomposition-based

approach to multi-objective optimization [130]. The random forest uses two types of tree

structures: a set of reference trees and a set of subproblem trees. We present a theoretical

analysis that demonstrates that the algorithm asymptotically produces the set of Pareto

optimal solutions, and use simulations to demonstrate the effectiveness and efficiency of

MORRF* in approximating the Pareto set.

1Published in Twenty-Fourth International Joint Conference on Artificial Intelligence(IJCAI15). Authors
are Daqing Yi, Michael A. Goodrich and Kevin D. Seppi.
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5.1 Introduction

Many tasks assigned to robots are complex, can be performed in several different ways, and

must maximize several different performance objectives. For example, a robot in a search task

may be expected to maximize the area that it covers while minimizing energy consumption

and avoiding risk (see, for example [81, 123]). As another example, a robot manipulator may

need to satisfy performance criteria related to movement, joint velocities, joint accelerations,

etc. [89].

A common method for finding a solution to a multi-objective optimization problem

is to optimize a single objective created by a weighted sum of the multiple objectives. In

path-planning the properties of the path produced by this method depend strongly on how

each objective is weighted. This means that a programmer, designer, or human teammate

must decide how to assign the weights so that the qualitative behavior matches what is

intended. In addition to the burden this places on the human operator, optimizing a weighted

sum does not work when the multiple objectives are very difficult to compare or are expressed

in incommensurate units.

In response to these challenges, it is useful to find the set of Pareto optimal solutions

to the multi-objective path-planning problem, meaning the set of solutions for which there

is no other solution that produces better payoffs for every objective. If an algorithm could

produce the set of Pareto optimal solutions then a human could interactively explore this

set to find one or more solutions that matches his or her expectations. The objective of

this paper is to create an algorithm that efficiently finds the Pareto set in a multi-objective

path-planning problem.

Most popular methods in multi-objective optimization do not naturally apply to

path-planning problems [34, 130]. The main reason for this is that path-planning often

represents the problem to be solved as a semi-structured tree with an exponential number of

possible trajectories through the tree, and the number of evaluations of the objective function

required by existing algorithms do not scale well when there are an exponential number of
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solutions. One approach to addressing this issue is to change the representation for a path

by, for example, coding a path as a sequence of fixed-length line segments represented by

direction [4, 52] or waypoints [89, 111] so that an evolutionary algorithm can be applied. This

produces an encoding that can be “fed into” an appropriate evolutionary algorithm to search

for the Pareto set. Unfortunately, these approaches do not scale well for large problems,

because the number of segments required to represent the paths grows too quickly and

estimating the required number of segments a priori is very challenging. Another approach is

to represent the path as a point in a very high-dimensional vector space. In this approach

a path is represented as a point in a n ∗ d dimensional space formed by n d-dimensional

way-points. If the number of way-points can be held constant, we can use standard approaches

to explore the space. However the search can be more difficult if we allow the number of

way-points, and therefore the dimensionality of the optimization problem, to vary. Indeed,

we will use this to guide our solution, but the algorithm we present works when the obstacles

in the path-planning space introduce discontinuities in these high-dimensional spaces, which

limits the applicability of heuristic-based search approaches [111, 130].

The RRT (Rapidly exploring Random Tree) algorithm is popular for finding feasible

solutions from a start position to a goal position in continuous or very large search spaces; it

also works well when environments have complex obstacles. The reason that RRT is popular

is that the tree structure tends to find solutions very efficiently. The RRT* algorithm was a

recently introduced modification to RRT that is guaranteed to find an optimal path given

enough sampling time [59, 60].

The remainder of the paper presents the MORRF* (Multi-Objective Rapidly ex-

ploring Random Forest*) algorithm, which we used to find a set of Pareto optimal paths.

MORRF* blends concepts from RRT* and decomposition-based approach to multi-objective

optimization [130].
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5.2 Related Work

Prior work has modeled the search space as a graph and applied a multi-objective A* search

to find the solution [72]. The limitation of this approach is that it requires an a priori

discretization rather than a discretization that is guided by the objectives as is done in RRT*;

a coarse discretization throws away potentially valuable information and a fine discretization

increases complexity and adds redundancy in the resulting graph structures. Obstacles can

make it more difficult to determining which cells in the discretized space are connected to

which others, especially when searching a space of more than 2 dimensions such as in planning

the trajectory for a robotic manipulator. Another approach that uses an a priori discretization

(and suffers from these limitations) is to encode a path as a sequence of directions from

one cell to next cell and then using the NSGA-II algorithm to find a set of Pareto optimal

solutions [4]. Constrained splines have been introduced to interpolate a sequence of way

points into a trajectory that avoids obstacles [3], but the effect of the interpolation on the

quality of the solution has not been evaluated. In addition to the sorting approach used

in NSGA-II, evolutionary algorithms based on the decomposition method have also been

proposed [34].

Evolutionary algorithms can be used to fine the Pareto set, but these approaches

tend to be inefficient when applied to spaces with high dimensions [73]. For such spaces,

small deviations in possible solutions may need to be considered in order to find an optimal

solution, but this means exploring many possible solutions for problems with non-linearities

or multiple local maxima. A path in a fixed-length search tree of depth d can be considered

as a point in <d, so tree-based approaches followed by an evolutionary ”fine-tuning” stage

risk running into the problems just listed with evolutionary approaches.

In contrast to searching through and comparing solutions in order to find the Pareto

optimal set, decomposition-based methods provide an attractive alternative. In this paper

we use a decomposition-based method similar to MOEA-D [130]. MOEA-D is an algorithm

that decomposes a multi-objective optimization problem into a set of subproblems. Each
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subproblem uses a weighed combination of the objectives to find specific points in the Pareto

set or to guide the search for such points. Let λ = [λ1, · · · , λK ]T be a weighting vector

such that
∑K

k=1 λk = 1. Let {c1(·), c2(·), . . . cK(·)} denote the K-element set of objective

functions, let c(x) = [c1(x), c2(x), . . . , cK(x)]T , and let x denote a potential solution. Finally,

let zutop = [z∗1 , · · · , z∗K ]T denote the so-called Utopia reference vector. Three types of

decomposition methods have been used in prior work [130]; however we will use only the two

methods described below, leaving the third (the boundary intersection method) to future

work.

arg max
x

K∑
k=1

λkck(x) weighted sum (5.1)

arg min
x

max
1≤k≤K

{λk
(
|ck(x)− zutop

k |
)
} Tchebycheff (5.2)

The solutions generated by each method are a subset of the Pareto optimal set.

Sampling-based path planning works effectively in continuous space. The RRT (Rapidly

exploring Random Tree) has been one of the most popular tools, which efficiently explores

the space by randomly sampling the search space; this algorithm tends to work well in the

presence of complex obstacles. Unfortunately, RRT has been shown to fail in optimality

guarantee [59]. In response, the RRT* algorithm was proposed, which uses a Rewire process

to gradually update the tree structure when new samples of the space indicate that this is

needed. Thus RRT* is asymptotically optimal [59, 60].

5.3 Multi-Objective Rapidly exploring Random Forest*

In this section, we present an algorithm that explores the solution space using RRT*-based

tree structures but uses multiple trees in the spirit of decomposition-based multi-objective

optimization. Because a set of trees are constructed in the exploration process, we call the

algorithm MORRF* (Multi-Objective Rapidly exploring Random Forest*).
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Consider a multi-objective path planning problem defined on a bounded, connected

open set X ⊂ Rd of possible solutions, and K different objectives {c1(·), c2(·), ...cK(·)}.

Without loss of generality, assume that the objective is to minimize these functions. Since the

Pareto optimal set is not enumerable, the goal is to find a representative, finite (M -element)

subset of the Pareto optimal set.

Definition 1. Multi-Objective Path Planning Consider a bounded, connected open set

X ⊂ Rd, an obstacle space Xobs, an initial state xinit, and a goal region Xgoal. Consider

the set of K objectives determined by a vector function c(·) = [c1(·), . . . , cK(·)]T defined by

c : X→ RK. Denote the obstacle-free space by Xfree = X \Xobs. Note that c is defined for

all points in X both those in free space and obstacle space.

Define a path in X as a continuous curve parameterized by s, denoted by σ : [0, s]→ X.

Define the cost of the path as the vector-valued function c(σ) =
∫
σ
c(x)ds. The goal is to find

M Pareto optimal paths σ∗ ∈ Σ∗ that (a) ∀τ ∈ [0, s], σ∗(τ) ∈ Xfree ; (b) σ∗(0) = xinit and

σ∗(s) = Xgoal; (c) There does not exist σ that ∀k ∈ K, ck(σ) ≤ ck(σ
∗) and ∃k′ ∈ K, ck′(σ) <

ck′(σ
∗).

Adopting the idea from the MOEA-D algorithm [130], the M elements in the solution

set Σ∗ will be obtained by decomposing the multi-objective problem into M subproblems.

In this paper, we use the Tchebycheff approach from MOEA-D. The Tchebycheff approach

requires us to define a Utopia reference vector zutop in the fitness space. As illustrated in

Figure 5.1, the Utopia reference vector is defined as that point in cost space that would

be obtained if it were possible to find a solution that produced the minimum value for all

objectives, that is the kth element of zutop is given by zutop
k = arg minx∈X ck(x).

We will need one type of RRT* structure to explore in an attempt to find the Utopia

reference vector in payoff space and another type of RRT* structure to find paths that

minimize the Tchebycheff condition. Thus, there are two types of tree structures used for the

optimization process.
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Figure 5.1: Tchebycheff method of finding Pareto front.

Sampling

Reference

Subproblems

...

... ...

Figure 5.2: Rapidly exploring process

• Each reference tree explores using a single objective ck(x), k ∈ K. The cost of each

vertex is calculated using the kth objective function.

• Each subproblem tree explores a subproblem gm(x | λm, zutop),m ∈ M . The cost

associated with each vertex is calculated using gm(x) defined by the corresponding

approach.

The K reference trees and M subproblem trees constitute the exploration forest.

The main flow of the MORRF* algorithm is given in Algorithm 1. Each reference

and subproblem tree are a collection of edges and vertices, Gr = (Vr, Er) and Gs = (Vs, Es),
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respectively, and the collection of reference trees and subproblem trees are denoted by

Gr = {Gr : r ∈ {1, . . . , K}} and Gs = {Gs : s ∈ {q, . . . ,M}.

Note that each tree, reference and subproblem, uses the same set of vertices, meaning

they all share the same points in configuration space. The differences between the trees is

the edge set; each reference tree and each subproblem tree has a different way of connecting

the vertices.

In each iteration, xrand is generated by randomly sampling from the configuration

space. The set of vertices is then searched to find that vertex whose position is nearest to the

random point; since all trees share the same set of vertices, any tree G ∈ Gr ∪Gs may be

used to find the nearest point. The location of this vertex is labeled xnearest. The process of

finding xnew is represented in the top layer of Figure 5.2.

The exploration at each iteration is given in Algorithm 1. Like RRT*, when the

algorithm stops, each reference tree and subproblem tree returns a path, and the set of all

these paths forms the solution set.

Algorithm 1 Multi-Objective Rapidly exploring Random Forest*

1: for each Vr ∈ Vr do
2: Vr ← {xinit}; Er ←←; i← 0

3: for each Vs ∈ Vs do
4: Vs ← {xinit}; Es ← ∅; i← 0

5: while i < N do
6: xrand ← Sample (i) ; i← i+ 1
7: G is arbitrary graph from Gr ∪Gs.
8: xnearest ← Nearest(G, xrand)
9: xnew ← Steer(xnearest, xrand, η)

10: if ObstacleFree(xnearest, xnew) then
11: for each Gr ∈ Gr do
12: Gr ← ExtendRef (Gr, xnew, xnearest , r)

13: for each Gs ∈ Gs do
14: Gs ← ExtendSub (Gs, xnew, xnearest , s)

We now define several functions, using appropriately modified definitions from [59].

• Sample(): Returns independent uniformly distributed samples from Xfree.
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• Nearest(): Returns a position of the vertex whose position is closest to point x.

Nearest(G = (V,E), x) = arg minv∈V ‖x− v‖.

• Steer(): Given two points x and y, returns a point z on the line segment from x to y

that that is no greater than η from y. Steer( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z − y‖.

• ObstacleFree(x, x′): Returns True if [x, x′] ⊂ Xfree , which is the line segment between

x and x′ lies in Xfree .

As illustrated in Figure 5.2, second layer, edges to the reference trees are added

before the edges to the subproblem trees. This allows us to compute the Utopia reference

vector using the path costs for each reference tree, each reference tree returning a path that

approximates the minimum cost for one objective. The Utopia reference vector is then used

to determine which edges should be added for each subproblem.

Consider the second layer in Figure 5.2, which shows the exploration process for the

reference trees. When a new position is obtained (red dot in Figure 5.2), all reference trees

add a vertex that corresponds to this new location. Each reference tree then connects this

new vertex to existing nodes by “rewiring” a set of neighboring vertices within a specified

radius (red dash circle in Figure 5.2). The process of rewiring consists of adding edges

between existing vertices and the new vertex. This is done using the Extend method, given

in Algorithm 2.

The precise definitions of the methods used in the Algorithm 2 are given below.

• Near(G, x, η): Returns a set of all vertices within the closed ball of radius rn centered

at x, in which rn = min{( γ
ξd

logn
n

)1/d, η}. The volume of the ball is min{γ logn
n
, ξdη

d}.

• Line(x, x′) : [0, s]← Xfree denotes the path defined by line segment from x to x′.

• Cost(v): Returns the cost of the unique path (because G is a tree) from xinit to the

vertex v ∈ V . Cost(xinit) = 0.

Consider the third layer in Figure 5.2, which illustrates how the subproblem trees

“rewire” to connect to the new vertex. The Utopia reference vector, ẑutop
k is defined as the
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Algorithm 2 ExtendRef (G, xnew , xnearest , k)

1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← Near(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) then
7: c′k ← Costk(xnear) +ck( Line(xnear, xnew) )
8: if c′k < Costk(xnew) then
9: xmin ← xnear

10: E ′ ← E ′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if ObstacleFree(xnew, xnear) then
13: c′k ← Costk(xnew) +ck( Line(xnew, xnear) )
14: if c′k < Costk(xnear) then
15: xparent ← Parent(xnear)
16: E ′ ← E ′ \ {(xparent, xnear)}
17: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)

k-dimensional vector constructed from each reference tree. The minimum cost of each path

from the starting vertex over any other vertex is computed for each reference tree. Using the

Utopia reference vector, each subproblem tree connects its new vertex and rewire neighboring

vertices in a radius as well. Algorithm 3 precisely follows Algorithm 2 except that instead of

computing the cost using one of the objectives, the cost is computed using the Tchebycheff

method; each of the mth subproblem trees corresponds to a different weighting vector λm.

This is performed using the Fitness method.

The Fitness method computes costs using one of the cost functions in Equations (5.1)-

(5.2). Different values of λm are obtained using the pattern in the MOEA-D algorithm:

(a) pre-deterimining the range of the K-cost functions, {ck() : 1 . . . K} and (b) sampling from

the K-dimensional hypercube defined by these ranges. The M samples from this hypercube

can be obtained by either creating a uniform (hyper)-grid or by doing uniform sampling

across the space.
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Algorithm 3 ExtendSub (G, xnew , xnearest ,m)

1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ′ ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← Near(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) then
7: c′ ← Cost(xnear) +c( Line(xnear, xnew) )
8: η′ = Fitness( c′, ẑutop | λm )
9: cnew = Cost(xnew)

10: ηnew = Fitness( cnew, ẑ
utop | λm )

11: if η′ < ηnew then
12: xmin ← xnear
13: E ′ ← E ′ ∪ {(xmin, xnew)}
14: for each xnear ∈ Xnear \ {xmin} do
15: if ObstacleFree(xnew, xnear) then
16: c′ ← Cost(xnew) +c( Line(xnew, xnear) )
17: η′ = Fitness( c′, ẑutop | λm )
18: cnear = Cost(xnear)
19: ηnear = Fitness( cnear, ẑ

utop | λm )
20: if η′ < ηnear then
21: xparent ← Parent(xnear)
22: E ′ ← E ′ \ {(xparent, xnear)}
23: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)
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5.4 Analysis

The analysis depends on the following restrictions on the cost functions and obstacle placement

required by the RRT* algorithm [59]. We claim without argument that the cost functions

and obstacle placements used in the simulation studies satisfy the restrictions.

Assumption 1. (Additivity of the objective functions) For a path constructed by composing

two other paths (to create a discontinuous path), ∀k ∈ K, σ1, σ2 ∈ Xfree, ck(σ1 ◦ σ2) =

ck(σ1) + ck(σ2).

Reference trees Subproblem tree

Figure 5.3: The dependency of the trees in MORRF*.

Assumption 2. (Continuity of the cost functions) For all k ∈ K, the cost function ck is

Lipschitz continuous, that is, for all paths σ1 : [0, s1]→ Xfree and σ2 : [0, s2]→ Xfree, there

exists a constant κ(k) ∈ R+ ∪ {0} such that |ck(σ1) − ck(σ2)| ≤ κ(k) supτ∈[0,1]‖σ1(τs1) −

σ2(τs2)‖.

Assumption 3. (Obstacle spacing) There exists a constant δ ∈ R+ such that ∀x ∈ Xfree ,

∃x′ ∈ Xfree such that

• the δ-ball centered at x′ lies inside Xfree ;

• x lies inside the δ-ball centered at x′.

Lemma 1. If the Utopia reference vector satisfies ∀k, σ zutop
k ≤ ck(σ), then any solution of

Eq. (5.2) is Pareto optimal.
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Proof. The proof is by contradiction. Let the weighting vector λ be arbitrary subject to

∀k λk ≥ 0, and let σ∗ = σ∗(λ) be a solution given that weighting vector. By definition,

σ∗ = arg min
σ

max
k∈K

λk|ck(σ)− zutop
k |. (5.3)

Assume that the path σ∗ is not Pareto optimal. Then there exist another path σo that

dominates σ∗ and the Utopia reference vector that satisfies ∀k ∈ K, zutop
k ≤ ck(σ), it follows

that ∀k ∈ K, zutop
k ≤ ck(σ

o) ≤ ck(σ
∗) and ∃k′ ∈ K, zutop

k ≤ ck′(σ
o) < ck′(σ

∗). These equations

imply

∀k ∈ K, λk|ck(σ∗)− zutop
k | ≥ λk|ck(σo)− zutop

k |;

∃k′ ∈ K, λk′ |ck′(σ∗)− zutop
k | > λk′|ck′(σo)− zutop

k |;

which yields the following contradiction to Eq (5.3):

max
k∈K

λk|ck(σ∗)− zutop
k | > max

k∈K
λk|ck(σo)− zutop

k |.

Lemma 2. If σ∗ is Pareto optimal then there exists a weighting vector λ, where ∀k λk ≥ 0

and
∑K

k=1 λk = 1, such that σ∗ is a solution of Eq. (5.2).

Proof. This is a proof by construction over cases. When σ∗ is Pareto optimal, there exist

two cases: (a) ∃k, ck(σ∗) = zutop
k and (b) ∀k, ck(σ∗) > zutop

k .

Case (a): ∃k, ck(σ∗) = zutop
k

Define P (σ∗) = {j | cj(σ∗) = zutop
j } and let P = {1, . . . , K} \ P . Define the weight vector λ

as ∀k ∈ P (σ∗), λk = 1
|P | and ∀k ∈ P (σ∗), λk = 0. For these weights, Eq. (5.2) returns a set

of solution paths, all of which have the same cost for the k-cost functions when k ∈ P but

different possible costs for k ∈ P . σ∗ is trivially in this set of solution paths.
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Case (b): ∀k, ck(σ∗) > zutop
k

For all k, define the weights as λk = `k∑K
j=1 `j

, where `k = 1

|ck(σ∗)−zutop
k | . The Tchebycheff cost

(Eq. (5.2)) becomes

gte(σ∗) = max
k∈K

|ck(σ∗)− zutop
k |

|ck(σ∗)− zutop
k |

1∑K
j=1 `j

=
1∑K
j=1 `j

Given any other path σ, we can represent the Tchebycheff cost as follows:

gte(σ) = max
k∈K

`k∑K
j=1 `j

|ck(σ)− zutop
k |

=
1∑K
j=1 `j

max
k∈K

∣∣∣∣1 +
ck(σ)− ck(σ∗)
ck(σ∗)− zutop

k

∣∣∣∣
Because σ∗ is Pareto optimal, [∃k′ ∈ K, ck′(σ) > ck′(σ

∗)]∨ [∀k ∈ K, ck′(σ) = ck′(σ
∗)] for any σ.

As ∀k, ck(σ∗) > zutop
k , we have ∀k, ck(σ∗)− zutop

k > 0. This implies ∃k′ ∈ K, ck′ (σ)−ck′ (σ∗)
ck′ (σ

∗)−zutop

k′
≥ 0,

which, in turn, implies that maxk∈K

∣∣∣1 + ck(σ)−ck(σ∗)

ck(σ∗)−zutop
k

∣∣∣ ≥ 1. Therefore, gte(σ) ≥ 1∑K
j=1 `j

=

gte(σ∗). Thus, σ∗ is a solution to Eq. (5.2).

By Lemma 1 and Lemma 2, we have the following:

Theorem 1. A path is Pareto optimal if and only if it is a solution to Eq. (5.2) for some

weight vector.

Theorem 1 implies that we can use the Tchebycheff method to find the Pareto set for

the multi-objective path-planning problems. The next question that needs to be answered is

whether the subproblem tree can find the optimal solution of its assigned subproblem.

The way that the RRT* algorithm works is that it incrementally constructs a tree from

a root position. The cost of the path from the position of the root node to the positions of

every other node converges to the minimal possible cost between the positions as the number

of iterations approaches infinity. We restate this as a lemma, and note that it corresponds

exactly to that given for Theorem 22 in [59].
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Lemma 3. Given Assumptions 1-3, the cost of the minimum cost path from the root to any

vertex in RRT* converges to the optimal cost almost surely.

Lemma 3 and Theorem 1 imply that each reference tree converges to the optimal path

from the root to any node in the tree, including a node arbitrarily close to the goal node.

This means that the costs returned by those trees for the path from the start to the goal for

the cost function ck converges to the kth element of the Utopia reference vector zutop. We

state this as a lemma.

Lemma 4. Given Assumptions 1-3, the cost of the minimum cost path from the root to any

vertex in kth reference tree converges to z∗k almost surely.

We now turn to the proof that the subproblem trees converge to paths in the Pareto

set. The proof of this claim requires that we know zutop to compute the Tchebycheff cost

associated with the cost used in the subproblem. If we knew that the reference trees had

already converged to zutop, then we could simply instantiate Lemma 3. Unfortunately, the

reference trees are converging at the same time that the subproblem trees are converging.

We now address this problem.

Let ẑutop(v; i) denote the approximate Utopia reference vector for position v on

iteration i, estimated by the cost from the root to position x from the k-reference trees.

Recall that the mth subtree attempts to generate a solution to Eq. (5.2) for a given weight

vector λm. Let

cSUB
m (z) = arg min

x
max
k∈K

λm,k|xk − zk| (5.4)

denote the cost vector in mth subproblem tree given the reference vector z and let ĉSUB
m (i, z)

denote its estimation at iteration i. A subproblem tree obtains ẑutop(v) for vertex v in the

reference trees and generate the corresponding cSUB
m (v; i, ẑutop(v)). This forms a cascade

structure from the reference trees to the subproblem tree. By Lemma 4, we have the

convergence of the reference trees.

We introduce Assumption 4 to get Lemma 5.
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Assumption 4. (Lipschitz continuity) cSUB
m (z) in Eq. (5.4) and its estimation ĉSUB

m (i, z)

are Lipschitz continuous, i.e. ‖cSUB
m (za)− cSUB

m (zb)‖ ≤ K‖za − zb‖.

Lemma 5. Given Assumptions 1-4 , the cost of the solution of mth subproblem tree converges

to the corresponding cost of the mth subproblem c∗m almost surely.

Proof. By Lemma 4, we have limj→∞‖z∗−ẑ(j)‖ = 0. By Lemma 3, we have limi→∞ ĉ(i, ẑ(j)) =

c(ẑ(j)). Thus, limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ = ‖limi→∞ c(z
∗)− limi→∞ ĉ(i, ẑ(j))‖ = ‖c(z∗)−

c(ẑ(j))‖.

Since c(z) and ĉ(i, z) are Lipschitz continuous; limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ ≤ K‖z∗−

ẑ(j)‖. As j → ∞, we have ẑ(j) → z∗, thus limi→∞‖c(z∗) − ĉ(i, ẑ(j))‖ → 0. This implies

P ({limi→∞
j→∞

cSUB
m (i, ẑ(j)) = c∗m}) = 1.

Now, we can prove that the solution from MORRF* almost surely converges to a

subset of the Pareto optimal set.

Theorem 2. Given Assumptions 1-4 , the solution generated by MORRF∗ converges to a

subset of the Pareto optimal set almost surely.

5.5 Simulation

We now present a series of simulation studies that provide evidence that MORRF* produces

a representative set of samples from the Pareto set. Results from MORRF* are obtained

for path-planning problems with two objectives and three objectives, and are compared

to a modified version of the NSGA-II multi-objective path-planning algorithm [4] as well

as a variant of MORRF* that uses a weighted sum rather than the Tchebycheff approach.

NSGA-II was selected because evidence suggests that it provides more uniform samples

from the Pareto set than other approaches [35]. We modified the NSGA-II algorithm for

this problem to use paths as inputs, represented by a series of waypoints connected by line

segments; the cost calculation is identical with that in MORRF*, calling Line(x1, x2) to
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Figure 5.4: Path planning with two objectives.
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calculate the cost between two way points x1 and x2. The weighted sum approach was chosen

because evidence suggests that it works well only when all the objectives are convex [130]

whereas the Tchebycheff approach should bring better diversity in the solutions [130]. The

weighted sum approach uses the same sampling method for weights as that used to generate

the λi in MORRF*. Each method was run for 5000 iterations and restricted to 30 solutions.

The first simulation study compares three algorithms in an obstacle-free world with two

objectives: minimize Euclidean distance, see Figure 5.4a, and minimize a cost function, see

Figure 5.4b. The first thing to note is that the convergence of NSGA-II-based path-planning

is very slow. This is indicated in Figures 5.4c-5.4d, which show the approximation to the

Pareto set and corresponding paths, respectively, after 5000 iterations; observe how the

quality of the paths and sampling of the Pareto set is uneven and unsatisfactory. By contrast,

the weighted sum approach returns a set of high-quality solutions close to the Pareto optimal

set, see Figures 5.4e and 5.4f; Finally, note the somewhat uneven clustering of solutions on

Pareto front for MORRF* using weighted sum, and compare this to the slightly more uniform

clustering of MORRF* using the Tchebycheff approach in Figures 5.4g-5.4h.

We therefore compared results for the two approaches for an environment with

obstacles, omitting results for NSGA-II because convergence is so slow. The results are

shown in Figure 5.5. As before, observe that the Tchebycheff approach yields a more uniform

sampling, albeit one that appears to be somewhat noisy approximation to the Pareto set.

Finally, we evaluated how MORRF* performs three objectives: Euclidean distance

and the two other objectives are shown in Figures 5.6a-5.6c. As shown in Figure 5.6, the

Pareto front uses the Utopia reference vector (Green point) to better approximate the Pareto

set than the weighted sum approach.

5.6 Summary and Future Work

This paper presented the MORRF* algorithm for the multi-objective path-planning problems

on continuous spaces. The algorithm blends principles from the RRT* algorithm with princi-
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(d) Pareto set: Tchebycheff

Figure 5.5: Path planning with two objectives and an obstacle.

(a) Distance (b) Cost 1 (c) Cost 2

Object ive 1

450
500

550
600

650
700

750
800

Object ive 2200 250 300 350 400 450 500

O
b

je
ct

iv
e

 3

300

350

400

450

500

550

600

(d) Pareto set: weighted sum

Object ive 1

400450500550
600

650
700

750
800

850 Object ive 2
250

300
350

400
450

500

O
b

je
ct

iv
e

 3

300

350

400

450

500

550

600

(e) Pareto set: Tchebycheff

Figure 5.6: Path planning with three objectives.
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ples from multi-objective optimization to produce an algorithm that provides a reasonable

approximation of the Pareto set, outperforms a common multi-objective optimization problem

on a path-planning problem, and has guaranteed best-case performance.

Future work should extend the algorithm to include not only the weighted sum and

Tchebycheff approach but also the boundary intersection approach, which results from [130]

suggest might have even better diversity. MORRF* could also be made more efficient by, for

example, using prior information to improve the set of sample points.

Another area of future work is to combine MORRF* with Bellman’s principle of

optimality. This could be done by setting a goal position as the root node in the algorithm

and then generating a set of Pareto optimal paths. The algorithm should then converge to

the set of Pareto optimal from any vertex in the tree to the goal.
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Chapter 6

Toward Multi-Objective Path-Planning using Decomposition-based Sampling1

Abstract

There are usually multiple factors in determining how a robot should perform a task. For ex-

ample, an autonomous driving system must consider both efficiency and safety. Consequently,

multiple objectives should be included in planning paths, which changes the planning problem

from finding the single best path to finding a set of non-dominant solutions. Although there

exist many algorithms for multi-objective optimization, few of these algorithms apply directly

to robotic path-planning and fewer still are capable of finding the set of Pareto optimal

solutions.

We present MORRF* (Multi-Objective Rapidly-exploring Random Forest*) algorithm,

which blends concepts from two different types of algorithms from the literature: Optimal

rapidly-exploring random tree (RRT*) for efficient path finding [59] and a decomposition-based

approach to multi-objective optimization [130]. The random forest uses two types of tree

structures: a set of reference trees and a set of subproblem trees. Each reference tree explores

a single objective, and the estimates from the set of reference trees are used to estimate

what is called the Utopia reference vector. This vector is required by the multi-objective

optimization part of the algorithm. Each subproblem tree explores the space, seeking to find

an optimal solution to the subproblem created by blending different objectives. We present a

theoretical analysis that demonstrates that the algorithm asymptotically produces the set of

1In preparation to be submitted to JAIR (The Journal of Artificial Intelligence Research). Authors are
Daqing Yi, Michael A. Goodrich, Kevin D. Seppi.
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Pareto optimal solutions, and use simulations to demonstrate the effectiveness and efficiency

of MORRF* in approximating the Pareto set.
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6.1 Introduction

Many important robot planning tasks cannot be translated into single objective to optimize. A

robot in a search task may be expected to maximize the area that it covers while minimizing

energy consumption and avoiding risk (see, for example [81, 124]). Similarly, a robot

manipulator may need to satisfy performance criteria related to movement, joint velocities,

joint accelerations, etc. [89]. This suggests a need for a multi-objective planning algorithm.

This paper presents such an algorithm, focused on multi-objective path-planning.

A common approach for finding a path to a multi-objective path-planning problem is

to find a path that optimizes a single objective created by a weighted sum of the multiple

objectives [10, 109]. The weighting on each objective determines which path is selected. In

order that the resulting path matches what is intended, a programmer, designer or human

teammate must know how to assign the weights to produce a path that matches his or her

intent. This requires some level of expertise and can impose high levels of cognitive workload.

Moreover, when the multiple objectives are very difficult to compare or are expressed in

incommensurate units, the solution that is found by a naive weighted-sum approach can be

differ greatly from the operator’s intent.

In response to these challenges, it is useful to find the set of Pareto optimal solutions to

a multi-objective path-planning problem. A solution is Pareto optimal solution if there is no

other solution that produces better payoffs for every objective. If an algorithm could produce

a set of Pareto-optimal paths then a human could interactively explore this set to find one

or more solutions that matches his or her intent. The objective of this paper is to create

an algorithm that efficiently finds a Pareto-optimal set in a multi-objective path-planning

problem.

Popular algorithms for multi-objective optimization [34, 130] have been applied to

path-planning problems. The main challenge is that path-planning often represents the

problem to be solved as a semi-structured tree with an exponential number of possible

trajectories through the tree. The number of evaluations of the objective function required by
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existing algorithms do not scale well when there are an exponential number of solutions. One

approach to addressing this issue is to change the representation for a path by, for example,

coding a path as a sequence of fixed-length line segments represented by direction [4, 52]

or waypoints [89, 131] so that an evolutionary algorithm can be applied. This produces an

encoding that can be “fed into” an appropriate evolutionary algorithm to search for the

Pareto set. Unfortunately, these approaches do not scale well for large problems, because

the number of segments required to represent the paths grows too quickly and estimating

the required number of segments a priori is very challenging. Another approach to solving

the multi-objective path-planning problem is to represent the path as a point in a very

high-dimensional vector space. In this approach a path is represented as a point in a n ∗ d

dimensional space formed by n d-dimensional way-points. If the number of way-points can be

held constant, we can use standard approaches to explore the space. However the search can

be more difficult if we allow the number of way-points, and therefor the dimensionality of the

optimization problem, to vary. Indeed, we will use this to guide our solution, but the algorithm

we present works when the obstacles in the path-planning space introduce discontinuities

in these high-dimensional spaces, which limits the applicability of heuristic-based search

approaches [111, 130].

In order to avoid the dilemma of workspace discretization (curse of dimensionality),

sampling-based path-planning algorithms [67] are popular for finding feasible solutions from

a start position to a goal position in continuous or very large search spaces; sampling-based

approaches also work well when environments have complex obstacles. RRT [65] is one the

most popular sampling-based algorithms because the tree structure tends to find solutions

very efficiently. The RRT* algorithm was a recently introduced modification to RRT that is

guaranteed to find an optimal path given enough sampling time [59, 60].

In this paper, we present MORRF* (Multi-Objective Rapidly exploring Random

Forest*) algorithm, which can be used to find a set of Pareto optimal paths. MORRF*

blends concepts from RRT* with a decomposition-based approach to multi-objective optimiza-
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tion [130]. The random forest uses two types of tree structures: a set of reference trees and a

set of subproblem trees. Each reference tree explores a single objective, and the estimates

from the set of reference trees are used to estimate what is called the Utopia reference

vector required by the adapted multi-objective optimization algorithm. Each subproblem

tree explores the space, seeking to find an optimal solution to the subproblem created by

blending different objectives.

Before proceeding with the remainder of the paper, it is useful to introduce some

notation; other notation will be introduced as needed throughout the paper. Let λ =

[λ1, · · · , λK ]T be a weighting vector such that
∑K

k=1 λk = 1. Let {c1(·), c2(·), . . . cK(·)} denote

the K-element set of objective functions, let c(x) = [c1(x), c2(x), . . . , cK(x)]T , and let x

denote a potential solution. Finally, let zutop = [z∗1 , · · · , z∗K ]T denote the so-called Utopia

reference vector, described in more detail in the next section.

This paper is an extension of a conference paper [125]. We introduce a new approach

in subproblem creation, an adaptive weight adjustment mechanism to enhance the diversity

of solutions and more complete simulations. The paper is structured as follows. Section 6.2

reviews relevant work in multi-objective optimization and sampling-based path-planning.

Section 6.3 presents the MORRF* algorithm, Section 6.4 proves that the algorithm produces

the Pareto frontier given enough sampling time. Section 6.5 presents the MORRF*-AWA

algorithm enhances the diversity of Pareto-optimal paths by adaptively modifying subproblem

trees. Section 6.6 uses simulations to illustrate the algorithm’s performance.

6.2 Related Work

A solution is Pareto optimal if no other solution is better with respect to every objective. A

naive search algorithm would identify Pareto-optimal solutions by comparing every solution

to every other solution. This works for problems with a small, discrete set of solutions,

but does not work for continuous spaces or problems with exponential numbers of potential

solutions. Marler and Arora observed that “no single approach is superior [for all problems].
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Rather, the selection of a specific method depends on the type of information given in the

problem” [73]. We note that (single objective) path-planning in a continuous state space is

often efficient using RRT* or other sampling-based approaches. This suggests that we use a

discretization-based approach, ruling out, for example, variational approaches to solving the

problem.

A common way to plan a path is to create a graph structure to represent a workspace.

In a multi-objective planning problem, the cost of each edge becomes a vector, the dimension

of which is determined by the number of objectives. Then, Multi-Objective A* [72] can be

applied to find Pareto-optimal paths. The limitation of this approach is that it requires an a

priori discretization rather than a discretization that is guided by the objectives as is done

in RRT*; a coarse discretization throws away potentially valuable information and a fine

discretization increases complexity and adds redundancy in the resulting graph structures.

Obstacles can make it more difficult to determining which cells in the discretized space are

connected to which others, especially when searching a space of more than 2 dimensions such

as in planning the trajectory for a robotic manipulator. Another approach that uses an a

priori discretization (and suffers from these limitations) is to encode a path as a sequence

of directions from one cell to next cell and then using the NSGA-II algorithm to find a set

of Pareto optimal solutions [4]. Constrained splines have been introduced to interpolate

a sequence of way points into a trajectory that avoids obstacles [3], but the effect of the

interpolation on the quality of the solution has not been evaluated.

Evolutionary algorithms can be used to find the Pareto set, but these approaches

tend to be inefficient when applied to spaces with high dimensions [73]. In addition to the

sorting approach used in NSGA-II, evolutionary algorithms based on the decomposition

method have also been proposed [34]. Approximating a path by a fixed-number sequence of

waypoints in the workspace enables converting a path-planning problem into a high-dimension

point-space optimization. Multi-objective evolutionary algorithms (e.g. Multi-Objective

PSO [131]) can then be introduced to solve the problems. For such spaces, small deviations
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in possible solutions may need to be considered in order to find an optimal solution, but this

means exploring many possible solutions for problems with non-linearities or multiple local

maxima. A path in a fixed-length search tree of depth d can be considered as a point in <d,

so tree-based approaches followed by an evolutionary “fine-tuning” stage risk running into

the problems just listed with evolutionary approaches.

In contrast to searching through and comparing solutions in order to find the Pareto

optimal set, decomposition-based methods provide an attractive alternative. In this paper

we use a decomposition-based method similar to MOEA-D [130]. MOEA-D is an algorithm

that decomposes a multi-objective optimization problem into a set of subproblems. Each

subproblem gm(x) uses a weighed combination of the objectives to find specific points in the

Pareto set or to guide the search for such points. Three types of decomposition methods have

been used in prior work [130].

arg min
x

K∑
k=1

λkck(x) Weighted sum (6.1)

arg min
x

max
1≤k≤K

{λk
(
|ck(x)− zutop

k |
)
} Tchebycheff (6.2)

arg min
x
{d | zutop − c(x) = dλ} Boundary intersect (6.3)

A general boundary-intersection is proposed in [130], which is an improved version of the

boundary-intersection approach. The subproblem gm(x) is defined in Equation (6.4).

gm(x) = d1 + θd2, (6.4)

in which d1 = ||(c(x)−zutop)Tλ||
||λ|| and d2 = ||(c(x)− (zutop + d1λ)||. The solutions generated by

each method are a subset of the Pareto optimal set.

Sampling-based path-planning can work effectively in continuous spaces. The RRT

(Rapidly exploring Random Tree) has been a popular algorithm, which efficiently explores

the space by randomly sampling the search space; this algorithm tends to work well in the
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presence of complex obstacles. Unfortunately, RRT fails to guarantee optimality [59]. In

response, the RRT* algorithm was proposed, which uses a Rewire process to gradually update

the tree structure when new samples of the space indicate that this is needed. RRT* is

asymptotically optimal [59, 60].

We now present an algorithm for multi-objective path-planning problem that decom-

poses the multi-objective optimization into a set of subproblems and introduces the power of

RRT* to solve each subproblem.

6.3 Multi-Objective Rapidly-exploring Random Forest*

In this section, we present an algorithm that explores the solution space using RRT*-based

tree structures but uses multiple trees in the spirit of decomposition-based multi-objective

optimization. Because a set of trees are constructed in the exploration process, we call the

algorithm MORRF* (Multi-Objective Rapidly exploring Random Forest*).

Consider a multi-objective path planning problem defined on a bounded, connected

open set X ⊂ Rd of possible solutions, and K different objectives {c1(·), c2(·), ...cK(·)}.

Without loss of generality, assume that the objective is to minimize these functions. Since the

Pareto optimal set is not enumerable, the goal is to find a representative, finite (M -element)

subset of the Pareto optimal set.

Definition 1. Multi-Objective Path-Planning Consider a bounded, connected open set

X ⊂ Rd, an obstacle space Xobs, an initial state xinit, and a goal region Xgoal. Consider

the set of K objectives determined by a vector function c(·) = [c1(·), . . . , cK(·)]T defined by

c : X→ RK. Denote the obstacle-free space by Xfree = X \Xobs. Note that c is defined for

all points in X both those in free space and obstacle space.

Define a path in X as a continuous curve parameterized by s, denoted by σ : [0, s]→ X.

Define the cost of the path as the vector-valued function c(σ) =
∫
σ
c(x)ds. The goal is to

find M Pareto optimal paths σ∗ ∈ Σ∗ that (a) ∀τ ∈ [0, s], σ∗(τ) ∈ Xfree ; (b) σ∗(0) = xinit
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and σ∗(s) = Xgoal; and (c) there does not exist σ that (i) ∀k ∈ K, ck(σ) ≤ ck(σ
∗) and

(ii) ∃k′ ∈ K, ck′(σ) < ck′(σ
∗).

Note that the last condition enforces a very strict form of payoff dominance; extensions

to the algorithm can be made for weaker forms of payoff dominance. Without loss of generality,

we could set s = 1 for all paths, but we retain the s-parameter because it is a convenient way

of signaling that two paths may be different lengths.

Adopting the idea from the MOEA-D algorithm [130], the M elements in the solution

set Σ∗ will be obtained by decomposing the multi-objective problem into M subproblems.

We use RRT*-based sampling to solve each subproblem. We will need one type of RRT*

structure to explore in each objective and another type of RRT* structure to find paths

that minimize each subproblem. Thus, there are two types of tree structures used for the

optimization process.

• Each reference tree explores using a single objective ck(x), k ∈ K. The cost of each

vertex is calculated using the kth objective function.

• Each subproblem tree explores a subproblem gm(x | λm, zutop),m ∈ M . The cost

associated with each vertex is calculated using gm(x) defined by the corresponding

approach.

Thus K reference trees are used, one each to explore the minimum of each objective, and M

subproblem trees are used, one for each weighting vector, λm, which is described below. The

K reference trees and M subproblem trees constitute the exploration forest.

Figure 6.1 illustrates the three approaches of decomposition in two objective problem.

Recall from the introduction that λ = [λ1, · · · , λK ]T is a weighting vector such that
∑K

k=1 λk =

1. In creating subproblems, λ is randomly sampled from a K-dimension simplex. In the

weighted-sum approach, a single objective is created by summing all the objectives by weights

from λ. The weighted-sum approach in a two-objective problem is illustrated in Figure 6.1a.

In the Tchebycheff and boundary-intersection approaches, a Utopia reference vector zutop
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Figure 6.1: Approaches of subproblem creation.

in identified in the objective space. The Tchebycheff approach seeks to find the solution

xthe ∈ X given by xte = arg minx max1≤k≤K{λk|ck(x)− zutop
k |}. As illustrated in Figure 6.1b,

the Utopia reference vector is defined as that point in cost space that would be obtained if it

were possible to find a solution that produced the minimum value for all objectives, that is

the kth element of zutop is given by zutop
k = arg minx∈X ck(x). It is called the Utopia reference

vector because it represents a point that very best that could conceivably be achieved for

an ideal point in the solution space. Similarly, the boundary-intersection approach uses the

Utopia reference vector but defines distance as zutop − c(x) = dλ. Solving the subproblem

equals minimizing the distance d. An example is illustrated in Figure 6.1c.

Given this brief overview of different decomposition methods, we are now in a position

to describe the main flow of the MORRF* algorithm; see Algorithm 1. The first four

steps initialize two types of trees, the reference tree with vertices and edges denoted by Vr

and Er, respectively, and the subproblem tree with vertices and edges denoted by Vs and

Es, respectively. Each reference and subproblem tree is a collection of edges and vertices,

Gr = (Vr, Er) and Gs = (Vs, Es), respectively, and the collection of reference trees and

subproblem trees is denoted by Gr = {Gr : r ∈ {1, . . . , K}} and Gs = {Gs : s ∈ {q, . . . ,M}}.

Because this is a path-planning problem, each vertex in each tree corresponds to a

physical location in workspace. In the examples used later, the workspace is a plane, so

the distances will all be computed using Euclidean distance. Note that each tree, reference

and subproblem, uses the same set of vertices, meaning they all share the same points in
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workspace. The differences between the trees is the edge set; each reference tree and each

subproblem tree has a different way of connecting the vertices. An example is given in

Figure 6.2.

The Utopia reference vectors are estimated from reference trees. Because all the

trees use the same sampled points in generating vertices, the expansion of reference trees

provides the estimated Utopia reference vector of newly sampled point. The estimated Utopia

reference vector is used in the calculation of subproblems. It is noticeable that the creation

of subproblems in the weighted-sum approach does not depend on Utopia reference vectors.

Reference trees can only be used as subproblems with particular weights. The k-th reference

tree equals to a subproblem tree with the normalized weight λ, in which the sum over λk

equals one.

For each i ∈ {1, . . . , N}, where N is the maximum number of iterations allowed by the

algorithm, a new position, xrand is generated by randomly sampling from the workspace. The

set of vertices is then searched to find that vertex whose position is nearest to the random

point; since all trees share the same set of vertices, any tree G ∈ Gr ∪Gs may be used to

find the nearest point. The location of this vertex is labeled xnearest. It is possible that the

distance between the newly sampled position and the vertex nearest to this position is very

large. A tolerance parameter, η, is used to guarantee that the distance between the vertices

in the tree and the new position is within some exploration tolerance; this is accomplished in

the Steer method. If the distance between xrand and xnearest is less than the tolerance η,

then xnew = xnearest. Otherwise, a line segment between xrand and xnearest is constructed and

the point on this line segment that is distance η from xnearest becomes the new point xnew.

The process of finding xnew is represented in Figure 6.2, with the dashed circle around the

new point indicating η.

Given the location of a new vertex for each tree, edges are added, potentially different

edges for each reference and each subproblem tree. We require that each new vertex be

connected to some existing vertex, so a feasibility check is added using the ObstacleFree
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Subproblem tree

Sampling

Figure 6.2: Rapidly exploring process

method. This method checks whether the line segment connecting xnew and xnearest enters

obstacle space. If it does, no new vertices and no new edges are added, and another iteration

of the algorithm begins. This check guarantees that when the algorithms are called that

determine which edge to add to the reference tree or subproblem tree, there is always at least

one possible edge that can be added; this is consistent with the RRT* algorithm.

We now define several functions, using appropriately modified definitions from [59].

• Sample(): Returns independent uniformly distributed samples from Xfree.

• Nearest(): Returns a position of the vertex whose position is closest to point x.

Nearest(G = (V,E), x) = arg minv∈V ‖x− v‖.

• Steer(): Given two points x and y, returns a point z on the line segment from x to y

that that is no greater than η from y. Steer( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z − y‖.

• ObstacleFree(x, x′): Returns True if [x, x′] ⊂ Xfree , which is the line segment between

x and x′ lies in Xfree .

The exploration at each iteration is given in Algorithm 1. Like RRT*, when the

algorithm stops, each reference tree and subproblem tree returns a path, and the set of all

these paths forms the solution set.

Because the convergence of the tree structure in RRT* means that the path from the

root to any vertex is an optimal path of the defined cost. We use the same sampling position

to extend all the trees in one iteration. Thus the vertices in the reference trees could be used

as reference for estimating the cost in constructing the subproblem trees.
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Algorithm 1 MORRF*

1: for each Vr ∈ Vr do
2: Vr ← {xinit}; Er ← ∅; i← 0

3: for each Vs ∈ Vs do
4: Vs ← {xinit}; Es ← ∅; i← 0

5: while i < N do
6: xrand ← Sample (i) ; i← i+ 1
7: G is arbitrary graph from Gr ∪Gs.
8: xnearest ← Nearest(G, xrand)
9: xnew ← Steer(xnearest, xrand, η)

10: if ObstacleFree(xnearest, xnew) then
11: for each Gr ∈ Gr do
12: Gr ← ExtendRef (Gr, xnew, xnearest , r)

13: for each Gs ∈ Gs do
14: Gs ← ExtendSub (Gs, xnew, xnearest , s)

We can now discuss how edges are added to the reference and subproblem trees. As

illustrated in Figure 6.2, first layer, edges to the reference trees are added before the edges

to the subproblem trees. This allows us to estimate the Utopia reference vector using the

path costs for each reference tree, each reference tree returning a path that approximates

the minimum cost for one objective. The Utopia reference vector is then used to determine

which edges should be added for each subproblem. Stated another way, the edges added to

each tree are determined by the definition of the fitness (cost function) for each tree.

Like all the sampling-based optimization, the random positions are uniformly sampled

from the workspace. This means that all the tree have equivalent vertices constructed from

the same position set, but they are connected by different measurements of the costs, either

a single objective or a cost from subproblem definition.

Consider the first layer in Figure 6.2, which shows the exploration process for the

reference trees. When a new position is obtained (red dot in Figure 6.2), all reference trees

add a vertex that corresponds to this new location. Each reference tree then connects this

new vertex to existing nodes by “rewiring” a set of neighboring vertices within a specified

radius (red dash circle in Figure 6.2). The process of rewiring consists of adding edges
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between existing vertices and the new vertex. This is done using the Extend method, given

in Algorithm 2.

The idea of the algorithm is to add the new vertex, xnew , to the graph and then look

for existing vertices in the graph that are close to the new vertex. Line 1 checks to see if

the randomly generated position is precisely on top of the position of a vertex already in

the graph. If so, no edges are added to the graph; this prevents self-loops, and is necessary

because of finite precision numerical representations.

Otherwise, the new vertex is added to the graph and all vertices in the graph within a

particular radius are identified. The radius is determined by the current number of vertices

in the graph. The radius and volume are precisely defined in the Near method, given

below. The equation in this method is a standard equation from the RRT* algorithm. It is

based on the expected density of the vertices in the graph, given as a spatial distribution in

d-dimensions, and is an important element in the convergence guarantees of RRT*.

Because of the way that xnew is defined, we are guaranteed that |Xnear| ≥ 1, that is,

there is at least one vertex “near” the new position.

Lines 5-10 then find the vertex, xmin that produces the minimum obstacle-free cost and

adds the edge between xmin and xnew to the graph. Because of the check in in Algorithm 1,

there is always at least one such edge. Observe that this cost is computed using the kth cost

function, which is, after all, the role of the reference tree.

Lines 11-17 “rewire” the graph. This only occurs if there are more than two vertices

in the neighborhood of xnew. The lines step through every vertex xnear in the neighborhood

(other than the minimum cost vertex – see line 11) and compares (a) the cost of the current

path through the tree to xnear to (b) the cost of the same path to the parent xparent of xnear

plus the cost from xparent to the new node xnew. If the cost of the path to xnew is less than

the cost of the path to xnear, the tree is rewired so that the parent forgets xnear and connects

instead to xnew – see lines 16-17.

The precise definitions of the methods used in the Algorithm 2 are given below.
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Algorithm 2 ExtendRef (G, xnew , xnearest , k)

1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← Near(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) then
7: c′k ← Costk(xnear) +ck( Line(xnear, xnew) )
8: if c′k < Costk(xnew) then
9: xmin ← xnear

10: E ′ ← E ′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if ObstacleFree(xnew, xnear) then
13: c′k ← Costk(xnew) +ck( Line(xnew, xnear) )
14: if c′k < Costk(xnear) then
15: xparent ← Parent(xnear)
16: E ′ ← E ′ \ {(xparent, xnear)}
17: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)

• Near(G, x, η): Returns a set of all vertices within the closed ball of radius rn centered

at x, in which rn = min{( γ
ξd

logn
n

)1/d, η}. The volume of the ball is min{γ logn
n
, ξdη

d}.

• Line(x, x′) : [0, s]← Xfree denotes the path defined by line segment from x to x′.

• Cost(v): Returns the cost of the unique path (because G is a tree) from xinit to the

vertex v ∈ V . Cost(xinit) = 0.

Consider the second layer in Figure 6.2, which illustrates how the subproblem trees

“rewire” to connect to the new vertex. The Utopia reference vector, ẑutop
k is defined as the

k-dimensional vector constructed from each reference tree. The minimum cost of each path

from the starting vertex over any other vertex is computed for each reference tree. The

Utopia reference vector is the vector of these costs. Using the Utopia reference vector, each

subproblem tree connects its new vertex and rewires neighboring vertices that fall within the

radius threshold. Algorithm 3 precisely follows Algorithm 2 except that instead of computing

the cost using one of the objectives, the cost is computed using the Tchebycheff, weighted
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sum, or boundary intersection method. Each of the mth subproblem trees corresponds to a

different weighting vector λm. This is performed using the Fitness method.

Algorithm 3 ExtendSub (G, xnew , xnearest ,m)

1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ′ ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← Near(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) then
7: c′ ← Cost(xnear) +c( Line(xnear, xnew) )
8: η′ = Fitness( c′, ẑutop | λm )
9: cnew = Cost(xnew)

10: ηnew = Fitness( cnew, ẑ
utop | λm )

11: if η′ < ηnew then
12: xmin ← xnear
13: E ′ ← E ′ ∪ {(xmin, xnew)}
14: for each xnear ∈ Xnear \ {xmin} do
15: if ObstacleFree(xnew, xnear) then
16: c′ ← Cost(xnew) +c( Line(xnew, xnear) )
17: η′ = Fitness( c′, ẑutop | λm )
18: cnear = Cost(xnear)
19: ηnear = Fitness( cnear, ẑ

utop | λm )
20: if η′ < ηnear then
21: xparent ← Parent(xnear)
22: E ′ ← E ′ \ {(xparent, xnear)}
23: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)

The Fitness method computes costs using one of the cost functions in Equations (6.1)-

(6.3). Different values of λm are obtained using the pattern in the MOEA-D algorithm:

(a) pre-deterimining the range of the K-cost functions, {ck() : 1 . . . K} and (b) sampling from

the K-dimensional hypercube defined by these ranges. The M samples from this hypercube

can be obtained by either creating a uniform (hyper)-grid or by doing uniform sampling

across the space.
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6.4 Theoretical Analysis

The analysis depends on the following restrictions on the cost functions and obstacle placement

required by the RRT∗ algorithm [59]. We claim without argument that the cost functions

and obstacle placements used in the simulation studies presented later in the paper satisfy

the restrictions.

Assumption 1. (Additivity of the objective functions) For a path constructed by composing

two other paths (to create a discontinuous path), ∀k ∈ K, σ1, σ2 ∈ Xfree, ck(σ1 ◦ σ2) =

ck(σ1) + ck(σ2).

Assumption 2. (Continuity of the cost functions) For all k ∈ K, the cost function ck is

Lipschitz continuous, that is, for all paths σ1 : [0, s1]→ Xfree and σ2 : [0, s2]→ Xfree, there

exists a constant κ(k) ∈ R+ ∪ {0} such that |ck(σ1) − ck(σ2)| ≤ κ(k) supτ∈[0,1]‖σ1(τs1) −

σ2(τs2)‖.

Assumption 3. (Obstacle spacing) There exists a constant δ ∈ R+ such that ∀x ∈ Xfree ,

∃x′ ∈ Xfree such that

• the δ-ball centered at x′ lies inside Xfree ;

• x lies inside the δ-ball centered at x′.

6.4.1 Optimality of the weighted-sum approach

Lemma 1 states that the solutions found by the weighted-sum approach are weakly Pareto-

optimal.

Lemma 1. Any solution of Equation (6.1) is weakly Pareto-optimal.

Proof. Let the weighting vector λ be arbitrary subject to ∀k λk ≥ 0, and let σ∗ = σ∗(λ) be

a solution given that weighting vector in Equation (6.1). By definition,

σ∗ =
K∑
k=1

λkck(x). (6.5)
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Assume that the path σ∗ is not weakly Pareto optimal. Then there exist another path σo

that strictly dominates σ∗, which means ∀k ck(σo) < ck(σ
∗). It equals to that ∀k λkck(σo) <

λkck(σ
∗). Summing all k ∈ K, we can have

∑K
k=1 λkck(σ

o) <
∑K

k=1 λkck(σ
∗). It contradicts

to Equation (6.5).

Conversely, each Pareto-optimal solution can be determined by a weight when the

multi-objective problem is convex.

Lemma 2. When the multi-objective problem is convex, if σ∗ is Pareto optimal then there

exists a weighting vector λ, where ∀k λk ≥ 0 and
∑K

k=1 λk = 1, such that σ∗ is a solution of

Equation (6.1).

Proof. The proof depends on the definition of ε-constraint and the generalized Gordan

theorem. The details are given in P.79 of [82].

By Lemma 1 and Lemma 2, we can conclude that the solutions of Equation (6.1) are

Pareto-optimal if the multi-objective optimization problem is convex.

Theorem 1. When the multi-objective problem is convex, a path is Pareto optimal if and

only if it is a solution to Equation (6.1) for some weight vector.

Proof. By Lemma 1, we know that each solution to Equation (6.1) is a solution in Pareto

optimal set. By Lemma 2, we know that each solution in Pareto optimal set, there exits a

weight that makes the solution an answer to Equation (6.1). Thus, we know that the Pareto

optimal set {σ∗} is the range of the function value defined by Equation (6.1).

Because the subproblem in the weighted-sum approach is a single-objective optimiza-

tion problem, the solution can be guaranteed to be asymptotically optimal by the property

of RRT* [59]. Define ΣMORRF∗
i as the set of solutions returned by the MORRF* algorithm

after running i-th iteration. Thus, we have Theorem 2.
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Theorem 2. Given Assumptions 1-4, when the multi-objective problem is convex, the solution

generated by the weighted-sum approach of MORRF∗ converges to a subset of the Pareto

optimal set almost surely, i.e. P (limi→∞ΣMORRF∗
i ⊂ Σ∗) = 1.

6.4.2 Optimality of the Tchebycheff approach

Lemma 3. If the Utopia reference vector satisfies ∀k, σ zutop
k ≤ ck(σ), then any solution of

Equation (6.2) is Pareto optimal.

Proof. The proof is by contradiction. Let the weighting vector λ be arbitrary subject to

∀k λk ≥ 0, and let σ∗ = σ∗(λ) be a solution given that weighting vector in Equation (6.2).

By definition,

σ∗ = arg min
σ

max
k∈K

λk|ck(σ)− zutop
k |. (6.6)

Assume that the path σ∗ is not Pareto optimal. Then there exist another path σo that

dominates σ∗ and the Utopia reference vector that satisfies ∀k ∈ K, zutop
k ≤ ck(σ), it follows

that ∀k ∈ K, zutop
k ≤ ck(σ

o) ≤ ck(σ
∗) and ∃k′ ∈ K, zutop

k ≤ ck′(σ
o) < ck′(σ

∗). These equations

imply

∀k ∈ K, λk|ck(σ∗)− zutop
k | ≥ λk|ck(σo)− zutop

k |;

∃k′ ∈ K, λk′ |ck′(σ∗)− zutop
k | > λk′|ck′(σo)− zutop

k |;

which yields the following contradiction to Equation (6.6):

max
k∈K

λk|ck(σ∗)− zutop
k | > max

k∈K
λk|ck(σo)− zutop

k |.

Before presenting the following lemma and proof, note that we modify the definition

of the Utopia vector to satisfy a technical requirement: zutop
k = infσ∈Xfree

ck(σ)− δ for δ some

small real number.
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Lemma 4. If σ∗ is Pareto optimal then there exists a weighting vector λ, where ∀k λk ≥ 0

and
∑K

k=1 λk = 1, such that σ∗ is a solution of Equation (6.2).

Proof. This is a proof by construction over cases. When σ∗ is Pareto optimal, there exist

two cases: (a) ∃k, ck(σ∗) = zutop
k and (b) ∀k, ck(σ∗) > zutop

k .

Case (a): ∃k, ck(σ∗) = zutop
k

Define P (σ∗) = {j | cj(σ∗) = zutop
j } and let P = {1, . . . , K} \ P . Define the weight vector λ

as ∀k ∈ P (σ∗), λk = 1
|P | and ∀k ∈ P (σ∗), λk = 0. For these weights, Equation (6.2) returns a

set of solution paths, all of which have the same cost for the k-cost functions when k ∈ P

but different possible costs for k ∈ P . σ∗ is trivially in this set of solution paths.

Case (b): ∀k, ck(σ∗) > zutop
k

For all k, define the weights as λk = `k∑K
j=1 `j

, where `k = 1

|ck(σ∗)−zutop
k | . The Tchebycheff cost

(Equation (6.2)) becomes

gte(σ∗) = max
k∈K

|ck(σ∗)− zutop
k |

|ck(σ∗)− zutop
k |

1∑K
j=1 `j

=
1∑K
j=1 `j

Given any other path σ, we can represent the Tchebycheff cost as follows:

gte(σ) = max
k∈K

`k∑K
j=1 `j

|ck(σ)− zutop
k |

=
1∑K
j=1 `j

max
k∈K

|ck(σ)− zutop
k |

|ck(σ∗)− zutop
k |

=

(
K∑
j=1

`j

)−1

max
k∈K

∣∣∣∣ ck(σ)− zutop
k

ck(σ∗)− zutop
k

∣∣∣∣
=

1∑K
j=1 `j

max
k∈K

∣∣∣∣ck(σ)− ck(σ∗) + ck(σ
∗)− zutop

k

ck(σ∗)− zutop
k

∣∣∣∣
=

1∑K
j=1 `j

max
k∈K

∣∣∣∣1 +
ck(σ)− ck(σ∗)
ck(σ∗)− zutop

k

∣∣∣∣

(6.7)
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Because σ∗ is Pareto optimal, [∃k′ ∈ K, ck′(σ) > ck′(σ
∗)] ∨ [∀k ∈ K, ck′(σ) = ck′(σ

∗)]

for any σ. As ∀k, ck(σ∗) > zutop
k , we have ∀k, ck(σ∗)− zutop

k > 0. This implies

∃k′ ∈ K, ∃k′ ∈ K, ck
′(σ)− ck′(σ∗)
ck′(σ∗)− zutop

k′

≥ 0, (6.8)

which, in turn, implies that

max
k∈K

∣∣∣∣1 +
ck(σ)− ck(σ∗)
ck(σ∗)− zutop

k

∣∣∣∣ ≥ 1. (6.9)

Therefore,

gte(σ) ≥ 1∑K
j=1 `j

= gte(σ∗). (6.10)

It means,

∀σ, gte(σ) > gte(σ∗). (6.11)

Thus, σ∗ is a solution to Equation (6.2).

By Lemma 3 and Lemma 4, we can conclude Theorem 3, which uses a proof similar

to the proof of Theorem 1.

Theorem 3. A path is Pareto optimal if and only if it is a solution to Equation (6.2) for

some weight vector.

Theorem 3 implies that we can use the Tchebycheff method to find the Pareto set for

the multi-objective path-planning problems. In terms of the MORRF* algorithm, we can

sample the Pareto set by selecting weights, forming a subproblem that can be solved using

RRT*. The next question that needs to be answered is whether the subproblem tree can find

the optimal solution of its assigned subproblem.

The way that the RRT* algorithm works is that it incrementally constructs a tree

from a root position. New nodes are constructed by randomly sampling points that are near
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Reference trees Subproblem tree

Figure 6.3: The dependency of the trees in MORRF*.

to other locations in the tree, and then wiring the new node and rewiring nearby nodes in

the tree so that the path from root to the position of the new node is minimal. The cost of

the path from the position of the root node to the positions of every other node converges

to the minimal possible cost between the positions as the number of iterations approaches

infinity. We restate this as a lemma, and note that it corresponds exactly to that given for

Theorem 22 in [59].

Lemma 5. Given Assumptions 1-3, the cost of the minimum cost path from the root to any

vertex in RRT* converges to the optimal cost almost surely.

Lemma 5 and Theorem 3 imply that each reference tree converges to the optimal path

from the root to any node in the tree, including a node arbitrarily close to the goal node.

This means that the costs returned by those trees for the path from the start to the goal for

the cost function ck converges to the kth element of the Utopia reference vector zutop. We

state this as a lemma.

Lemma 6. Given Assumptions 1-3, the cost of the minimum cost path from the root to any

vertex in kth reference tree converges to z∗k almost surely.

We now turn to the proof that the subproblem trees converge to paths in the Pareto

set. The proof of this claim requires that we know zutop to compute the Tchebycheff cost

associated with the cost used in the subproblem. If we knew that the reference trees had

already converged to zutop, then we could simply instantiate Lemma 5. Unfortunately, the

reference trees are converging at the same time that the subproblem trees are converging.

We now address this problem.
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OBJ 1

OBJ 2

Figure 6.4: The convergence process of trees.

Let ẑutop(v; i) denote the approximate Utopia reference vector for position v on

iteration i, estimated by the cost from the root to position x from the k-reference trees.

Recall that the mth subtree attempts to generate a solution to Equation (6.2) for a given

weight vector λm. Let

cSUB
m (z) = arg min

x
max
k∈K

λm,k|xk − zk| (6.12)

denote the cost vector in mth subproblem tree given the reference vector z and let ĉSUB
m (i, z)

denote its estimation at iteration i. A subproblem tree obtains ẑutop(v) for vertex v in the

reference trees and generate the corresponding cSUB
m (v; i, ẑutop(v)) at iteration i for either

adding new vertex or rewiring an existing vertex. This forms a cascade structure from the

reference trees to the subproblem tree. By Lemma 6, we have the convergence of the reference

trees.

We introduce Assumption 4 to get Lemma 7.

Assumption 4. (Lipschitz continuity) cSUB
m (z) in Equation (6.12) and its estimation ĉSUB

m (i, z)

are Lipschitz continuous, i.e. ‖cSUB
m (za)− cSUB

m (zb)‖ ≤ K‖za − zb‖.

Lemma 7. Given Assumptions 1-4 , the cost of the solution of mth subproblem tree converges

to the corresponding cost of the mth subproblem c∗m almost surely.

Proof. By Lemma 6, we have

lim
j→∞
‖z∗ − ẑ(j)‖ = 0. (6.13)
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By Lemma 5, we have

lim
i→∞

ĉ(i, ẑ(j)) = c(ẑ(j)). (6.14)

Thus,

lim
i→∞
‖c(z∗)− ĉ(i, ẑ(j))‖

=‖ lim
i→∞

c(z∗)− lim
i→∞

ĉ(i, ẑ(j))‖

=‖c(z∗)− c(ẑ(j))‖.

Since c(z) and ĉ(i, z) are Lipschitz continuous;

lim
i→∞
‖c(z∗)− ĉ(i, ẑ(j))‖ ≤ K‖z∗ − ẑ(j)‖. (6.15)

As j →∞, we have ẑ(j)→ z∗, thus limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ → 0. This implies

P ({ lim
i→∞
j→∞

cSUB
m (i, ẑ(j)) = c∗m}) = 1. (6.16)

Now, we can prove that the solutions from MORRF* almost surely converge to a

subset of the Pareto optimal set.

Theorem 4. Given Assumptions 1-4 , the solution generated by the Tchebycheff approach of

MORRF∗ converges to a subset of the Pareto optimal set almost surely, i.e.

P ( lim
i→∞

ΣMORRF∗
i ⊂ Σ∗) = 1.

6.4.3 Optimality of the boundary-intersection approach

Equation (6.3) in the boundary-intersection approach “aims at getting boundary points

rather than Pareto-optimal points” [107]. Das and Dennis [33] claim that the solutions

of the subproblems in boundary-intersection approach may not be Pareto-optimal. Thus,
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the boundary-intersection approach of MORRF* can also not guarantee that the solutions

converge to Pareto-optimal.

6.5 Adaptive Weight Adjustment

In measuring the quality of solutions that are returned by a multi-objective path-planner, we

are interested in two criteria:

• the Pareto-optimality of each solution; and

• the diversity of solutions along the Pareto front.

Diversity, in this context, means that the samples from the Pareto optimal set of solutions are

approximately uniform across the set. By Theorem 4, we have that all the solutions obtained

by MORRF* asymptotically converge to Pareto optimal (at least for the weighted sum and

Tchebycheff approaches). In order to maximize the diversity, we uniformly sample the weights

for subproblems from a normalized simplex, w1 + · · ·+ wK = 1. However, the mapping from

a weight space to an objective space is not always linear. The nonlinear mapping potentially

decreases the diversity in the objective space. A natural approach to this issue is adaptively

adjusting weights by the information from the objective space [94]. Inspired by the idea, we

import weight adjustment to the subproblem trees in MORRF*.

We use the definition of sparsity level, SL, from [94] to measure the “diversity by

crowdedness” of solutions. The sparsity level of the i-th path σ∗i ∈ ΣMORRF∗ is calculated

as

d(σ∗i ) = Summ
j=1L

NNj
i

2 , (6.17)

in which L
NNj

i
2 means the Euclidean distance from the i-th path to its j-th nearest neighbor

in the objective space. A larger sparsity level for a solution means that there aren’t other

solutions “crowding” around it. The diversity of a set of solutions, called the spacing
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metric [102, 132], is thus calculated by averaging the sparsity levels of solutions, as follows:

S(ΣMORRF∗) =

√√√√Sum
σ∗i ∈ΣMORRF∗ (d(σ∗i )− d̄)

|ΣMORRF∗| − 1
, (6.18)

in which d̄ =
Sum

σ∗
i
∈ΣMORRF∗ d(σ∗i )−d̄)

|ΣMORRF∗ |
. Observe that we used functional notation for Sum

since we are using Σ’s to represent sets of paths. If all the solutions are evenly distributed in

the objective space, the value of spacing metric is close to zero.

Our goal is to minimize the value of spacing metric or, equivalently, to maximize the

diversity of paths in the objective space, by adaptively adjusting weights. We will need to

use the information in the objective space to find new weights. For the Tchebycheff approach,

a so-called WS-transformation is introduced in [94] to represent the mapping from a weight

space to an objective space. This transformation is defined as

λ′ = WS(λ) =

[
1
λ1∑K
k=1

1
λk

,
1
λ2∑K
k=1

1
λk

, · · · ,
1
λK∑K
k=1

1
λk

]
. (6.19)

Figure 6.5 shows one example of WS transformation. Figure 6.5a shows 3D weights that are

uniformly sampled in a simplex. Figure 6.5b shows transformed results. We can see that

WS-transformation moves points toward end points of the simplex. The WS-transformation is

its own inverse, that is λ = WS(WS(λ)) [94]. In order to have solutions uniformly distributed

in objective spaces, we can apply the WS-transformation to uniformly sampled weights.

In most cases, the subproblem trees converge to a sub-optimal structure very quickly.

It takes more iterations to refine the structure to the optimal. Because a tree structure

determines only one best path, we can use the sparsity level of the best path to represent

the sparsity level of the tree. If we could identify that the assigned weight leads to a Pareto-

optimal solution with low sparsity level, we could stop the exploration earlier, and start a new

subproblem with a new weight that is likely to lead to a solution with higher sparsity level.

This forms the basis of the adaptive weight adjustment (MORRF*-AWA) algorithm. This

119



www.manaraa.com

0
0.20

0.40

objective 1

0.2

0.2

before WS

0.6

0.4

objective 2

0.4

ob
je

ct
iv

e 
3

0.6 0.8

0.6

0.8

0.8

11

1

(a) Before

0
0.20

0.40

objective 1

0.2

0.2

after WS

0.6

0.4

objective 2

0.4

ob
je

ct
iv

e 
3

0.6 0.8

0.6

0.8

0.8

11

1

(b) After

Figure 6.5: WS Transformation of 3D weights.

algorithm uses reference trees in the samw way as MORRF*, weights of subproblem trees are

continously adjusted by the sparsity levels. MORRF*-AWA is presented in Algorithm 4.

Algorithm 4 MORRF*-AWA

1: for each Vr ∈ Vr do
2: Vr ← {xinit}; Er ← ∅; i← 0

3: for each Vs ∈ Vs do
4: Vs ← {xinit}; Es ← ∅; i← 0

5: while i < N do
6: xrand ← Sample (i) ; i← i+ 1
7: G is arbitrary graph from Gr ∪Gs.
8: xnearest ← Nearest(G, xrand)
9: xnew ← Steer(xnearest, xrand, η)

10: if ObstacleFree(xnearest, xnew) then
11: for each Gr ∈ Gr do
12: Gr ← ExtendRef (Gr, xnew, xnearest , r)

13: for each Gs ∈ Gs do
14: Gs ← ExtendSub (Gs, xnew, xnearest , s)

15: UpdateBestPaths (Gs)
16: UpdateSparsityLevel (Gs)
17: Gs ← AdaptiveWeightAdjustment (Gs)

UpdateBestPaths (G) updates the best path that is found by the current tree

structure. UpdateSparsityLevel (Gs) updates the sparsity level of each subproblem tree.

AdaptiveWeightAdjustment( Gs ) is given in Algorithm 5.
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Algorithm 5 AdaptiveWeightAdjustment (Gs)

1: H ← UpdateHistoryPair(Gs)
2: DeleteTreesBySparistiyLevel(Gs, τ)
3: P ← FindHistoryPairsBySparsityLevel(H, τ)
4: W ← CreateNewWeights(P )
5: Gs ← CreateNewSubproblemTree(()W )

• UpdateHistoryPair(Gs): Update the history pairs by the new best paths of trees in

Gs.

• DeleteTreesBySparistiyLevel(Gs, τ) : Delete τ subproblem trees in Gs that

have the lowest sparsity levels.

• FindHistoryPairsBySparsityLevel(H, τ): Return τ history pairs that have the

highest sparsity levels.

• CreateNewWeights(P ): Return |P | number of weights by history pairs P . Given a

history pair (c, SP ) ∈ P , we can create a new weight λ by Equation (6.20) [94].

λ =

 1

cK−zutop
K∑K

k=1
1

ck−zutop
k

, · · · ,
1

cK−zutop
K∑K

k=1
1

ck−zutop
k

 (6.20)

• CreateNewSubproblemTree(W ): Return |W | number of subproblem trees by a

set of weights W .

The adaptive weight adjustment process will refine the weights of subproblem trees

by removing trees with low sparsity levels and adding new trees that are likely to have high

sparsity levels.

6.6 Experiments

In this section, we use four cases to evaluate the performance of the MORRF* and MORRF*-

AWA. Because MORRF*-AWA only includes adaptive weight adjustment for the Tchebycheff
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Figure 6.6: Pareto front of a two-objective path-planning problem.

approach, we call it “Tchebycheff-AWA” in the comparison of the Tchebycheff approach in

MORRF*.

Case 1 is a two-objective planning problem in a workspace without obstacles. Fig-

ure 6.6a-6.6c show the solutions found by the weighted-sum, Tchebycheff and Boundary-

intersection approaches, respectively, usingMORRF* in the objective space. 30 solutions are

collected by each approach and the algorithms are run for 8000 iterations. Figure 6.6d shows

the spacing metric of the solutions found by all three approaches. A lower value means a

better diversity. We can see that the solutions found by all the three approaches converge

to Pareto-optimal by the shape of “Pareto-front”. We can also see that the weighted-sum

approach superior diversity, while the boundary-intersection approach has inferior diversity.
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Figure 6.7: Different θ of the boundary-intersection approach in a two-objective optimization
problem.

Our implementation of boundary-intersection approach uses the penalty-based bound-

ary intersection in Equation (6.4). There is a parameter θ in balancing the penalties. Zhang

and Li [130] claim that tuning θ can impact the diversity of solutions. Figure 6.7b shows

the solutions in the objective space found by choosing different θ. The spacing metrics are

compared in Figure 6.7i. We can see that θ = 2 shows the best diversity.

Case 2 tests a three-objective planning problem in a workspace without obstacles.

Figure 6.8a - 6.8a show the solutions found by three approaches in the objective space.
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Figure 6.8: Pareto front of a three-objective path-planning problem.

Figure 6.8d shows the comparison by spacing metric. We can see that the Tchebycheff

approach shows the best diversity among all three approaches.

Figure 6.9 and Figure 6.10 show the convergence of a subproblem tree in a two-

objective path-planning problem and in a three-objective path-planning problem. The fitness

means the objective value of each subproblem. Here the convergence of a tree is represented

by the convergence of the best path it finds. As expected, the subproblem trees converge

after reference trees converge.

Case 3 tests a two-objective planning problem in a world with obstacles. Figure 6.11a

- 6.11c show the solutions found by three approaches in the objective space. Figure 6.11d

compares the spacing metrics of solutions found by three approaches. The Tchebycheff

approach shows the best diversity.
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Figure 6.9: Convergence of a subproblem tree in a two-objective path-planning problem.
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Figure 6.10: Convergence of a subproblem tree in a three-objective path-planning problem.

125



www.manaraa.com

520 540 560 580 600 620 640

Objective 1

85

90

95

100

105

110

115

O
bj

ec
tiv

e 
2

Weighted-sum

Utopia reference vector
Solutions

(a) Weighted-sum

520 540 560 580 600 620 640

Objective 1

85

90

95

100

105

110

O
bj

ec
tiv

e 
2

Tchebycheff

(b) Tchebycheff

520 540 560 580 600 620 640 660

Objective 1

85

90

95

100

105

110

115

O
bj

ec
tiv

e 
2

Boundary-intersection

(c) Boundary-intersection

Weighted-sum Tchebycheff Boundary-intersection

1000

1500

2000

2500

3000

3500

4000

4500

5000

(d) Sparsity level

Figure 6.11: Pareto front of a two-objective path-planning problem in a workspace with
obstacles.
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Figure 6.12: Pareto front of a two-objective path-planning problem.

In all above cases, the range of the objectives over the set of solutions is small

(meaning that there is little variance in the scores of different solutions). In case 4, we tested

a two-objective path-planing problem in a workspace without obstacles but the values in

the objective 2 vary in a wider range than those in the objective 1. Figure 6.12d shows the

solutions from the weighted-sum approach and the Tchebycheff approach. The Tchebycheff

approach shows more consistent performance in 20 different runs.

We now evaluate whether MORRF*-AWA improves the diversity of solution by

comparing with the Tchebycheff approach in MORRF*. Figure 6.13 shows that it improves

the diversities in all above four cases.
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Figure 6.13: Spacing metric comparison between Tchebycheff approach and Tchebycheff-AWA.
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Because the cost of a path is an integral along the points in the path and we assume

additivity of the objective functions, it is very hard to create a test case that the mulit-

objective function is non-convex. By the cases we tested, we can see all three approaches

can provide Pareto-optimal solutions if there are enough iterations to run. The Tchebycheff

approach shows the best performance in diversity in different cases. The diversity of solutions

can be improved by introducing adaptive weight adjustment a la MORRF-AWA*.

6.7 Summary and Future Work

In this paper, we proposed a sampling-based multi-objective path-planning algorithm,

MORRF*. It consists of reference trees and subproblem trees. The reference trees ex-

plore a workspace to provide the estimation of Utopia reference vectors. The subproblem

trees use the estimated Utopia reference vectors to connect sampled points for solving indi-

vidual subproblems. Three different approaches of creating subproblems are provided. The

solutions returned by subproblem trees are the solutions of the algorithm. We have applied

theoretical analyses on the optimality of solutions in different approaches. MORRF*-AWA is

then introduced, and applied adaptive weight adjustment to subproblem trees for enhancing

diversity of solutions. We have conducted experiments to show the performances of different

approaches in MORRF* and MORRF*-AWA.

The weighted sum and Tchebycheff methods for giving weights for the subproblem

trees are guaranteed to produce Pareto optimal solutions, but the boundary intersection

method is not. In the empirical studies, the Tchebycheff method produced the greatest

diversity, even when the θ parameter of the boundary intersection technique was optimized.

Adjusting weights improved diversity for the Tchebycheff method, but did so at the cost of

time to find solutions.

Future work should mix subproblems that different approaches in one MORRF*

algorithm by, for example, including weighted sum, Tchebycheff, adjusted-weight Tchebycheff,
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and boundary intersection methods. This can potentially use the advantages of the different

approaches to maximize performance of the complete algorithm.

Future work should also seek to exploit similarities among subproblems to accelerate

the tree extending process. Similarity among subproblems can potentially allow the algorithm

to reuse existing tree structures in creating new subproblem trees in the process of adaptive

weight adjustment.
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Chapter 7

Homotopy-Aware RRT* : Toward Human-Robot Topological Path-Planning 1

Abstract

An important problem in human-robot interaction is for a human to be able to tell the robot

go to a particular location with instructions on how to get there or what to avoid on the way.

This paper provides a solution to problems where the human wants the robot not only to

optimize some objective but also to honor “soft” or “hard” topological constraints, i.e. “go

quickly from A to B while avoiding C”. The paper presents the HARRT* (homotopy-aware

RRT*) algorithm, which is a computationally scalable algorithm that a robot can use to

plan optimal paths subject to the information provided by the human. The paper provides a

theoretic justification for the key property of the algorithm, proposes a heuristic for RRT*,

and uses a set of simulation case studies of the resulting algorithm to make a case for why these

properties are compatible with the requirements of human-robot interactive path-planning.

1Published in The Eleventh ACM/IEEE International Conference on Human Robot Interaction(HRI ’16).
Authors are Daqing Yi, Michael A. Goodrich and Kevin D. Seppi.
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7.1 Introduction

In search and rescue, police, and military applications of human-robot teaming, a human

may want to tell a robot to go to a particular location while giving information that the

robot should use to decide what path to take. This is a form of interaction that requires a

robot to plan a path that honors the human’s intent. In this paper, we focus on two useful

elements of intent: the shape and quality of the planned path. Although algorithms exist to

implement path properties like continuity and smoothness, there appears to be no algorithm

that is computationally tractable while being powerful enough to honor both shape and

quality aspects of a path. Such an algorithm would support human instructions like “go

quickly around building A and then between the two trees while avoiding region C.” In this

paper, we present an algorithm that optimizes path quality while allowing a human to specify

regions to avoid, preferences for directions of traveling around obstacles, via-point/waypoint

constraints, and reference path constraints [124].

The contribution of this paper (a) is a computationally efficient algorithm for detecting

when two paths are homotopic that (b) can be used as a heuristic for an RRT* planner to

restrict search to a given homotopy class, where (c) the planning is done by the robot and

(d) the optimization criteria and shape constraint is specified by the human. The specific

contribution to human-robot interaction is that these properties, supported by simulation

results, create a set of path affordances that allow a human to specify a wide range of shape

constraints and objective preferences that the robot honors in path-planning.

The key to this algorithm is the topological concept of homotopy, which is a mathe-

matical formalism of the inherent similarity or dissimilarity of two paths. Given two paths

σ1 and σ2 with the same endpoints, if one can be continuously deformed into the other

without encroaching any obstacle and without moving the endpoints then they are said to be

homotopic [12, 46]. We write this as σ1 ' σ2. In a slight abuse of notation, we say that two

sets of paths are homotopic Γ1 ' Γ2 if all paths in the sets are homotopic.
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We restrict attention to paths that start at a given initial position xinit and end at

a given terminal position xgoal, and group the set of all such possible paths into classes

according to their shape properties. Formally, the set of paths that are homotopic to each

other form a homotopy class, and the set of homotopy classes partition the set of all possible

paths between any two positions xinit and xgoal. In an environment containing obstacles, we

argue that this homotopy partition, provides a mapping between a human-based or colloquial

use of the term “shape” and the corresponding topological notion.

Theoretically, there exist infinite homotopy classes, because an obstacle can be encircled

an arbitrary number of times. With some loss of generality, we impose the following:

Restriction 1. We consider only “simple paths”, that is, paths that do not form complete

loops around obstacles.

We can now define the problem the algorithm must solve.

Definition 1. Homotopy-Based Optimal Path-Plan-ning Let X ⊂ Rd denote a

bounded connected open set, Xobs ⊂ X an obstacle space, Xfree = X \Xobs the obstacle-free

space, xinit an initial state , and xgoal a goal state. Define a path in X as a continuous

curve parameterized by s as σ(s) : [0, 1] → X. Denote the monotonic increasing cost of

the path as Cost(σ). Let H(xinit, xgoal) denote the set of homotopy classes defined by

xinit ∈ Xfree and xgoal ∈ Xfree, H = h1, · · · , hN ⊆ H a particular subset of homotopy

classes, and h(σ) the homotopy class of σ. The goal is to find paths σ∗hi ∈ Σ∗, hi ∈ H

such that (a) ∀s ∈ [0, 1], σ∗(s)hi ∈ Xfree; (b) σ∗hi(0) = xinit and σ∗hi(1) = xgoal; and (c)

∀hi ∈ H, σ∗hi = arg minσ∈Xfree∧h(σ)=hi Cost(σ).

Definition 1 says that, given a particular set of homotopy classes and a cost function,

the planner should find paths that minimize the cost in the given homotopy classes.

133



www.manaraa.com

7.2 Related Work

From the human side of the HRI problem, many researchers have noted that humans often

represent the world using topological rather than metric-based mental models [66]. Various

methods have been used to create topological representations that can be used by path-

planners for robots [40, 74, 104, 114]. Because these planners represent the relationships

between landmarks as a graph and then plan paths using a graph-search algorithm, they

satisfy strict topological constraints but do not minimize Cost(σ).

Homotopy-based path-planning should enable a combination of constraints and con-

tinuous objectives, but determining the homotopic equivalence of two paths is usually

computationally expensive or not general. For example, the Voronoi diagram is used to

identify a path from any homotopy class in [8], but this algorithm has limitations when there

are certain kinds of complex obstacles in the world. A so-called funnel algorithm in the

universal covering space yields an improvement [49], but complexity does not scale well when

obstacles are not smooth and convex.

Other algorithms for finding homotopic equivalence include (a) using semi-algebraic

cuts to convert a candidate path into a “word” [44] and (b) converting a plane into a complex

plane and then finding invariant properties of the paths in this plane [12]. Unfortunately,

their performance depends on how the map is discretized; computation cost expands greatly

if the obstacles are reasonably approximated by a high resolution discretization.

Homotopies have been used in sampling-based algorithms. In a probabilistic road

map structure, the paths can be categorized into homotopy classes using a method called

homotopic redundancy [101]. Another approach is to divide the space using a set of reference

frames crossing each obstacle [48]. This method is particularly relevant because, as we shall

show, how a path crosses the reference frames can be represented as a canonical sequence

and comparing the sequences allows homotopic equivalence to be determined. We extend

the ideas in these algorithms to enable optimal path-planning within a more complete set of
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Figure 7.1: Map with obstacles.

homotopically equivalent paths. To accomplish this, we use a variation of the bidirectional

RRT* algorithm [110], which is more efficient than the original [58].

7.3 Homotopic String Classes

This section shows how to create a string-based representation of any simple path, and then

use the easy-to-compute strings to efficiently identify homotopic equivalence.

7.3.1 Generating String Representations

Strings are generated using an improved method of Jenkins’ approach [53] to detecting

homotopic equivalence of two paths by separating a map into disjoint subregions [47]. A

reference frame segment, which Jenkins called a reference frame, is a line segment constructed

from a center point and a point in a obstacle, extended to the map boundaries. The collection

of reference frames created from a set of obstacles partition the map into disjoint subregions.

Figure 7.1a shows an example of a map with two obstacles and two reference frames (blue

and green dashed lines) – one for each obstacle. Strings will be constructed based on the

simple idea that if two paths cross the same sequences of reference frames, then they belong

to the same homotopy class.
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In Algorithm 1, the reference frames R are created from a set of points that are

generated as follows: In a map with a set of obstacle regions B, an obstacle point bk is

randomly sampled from each obstacle region Bk ∈ B. A center point c is then randomly

sampled in the non-obstacle region Xfree = X \B subject to the constraint that it is not in

any line that connects two different bk. Connecting each bk with c creates a radial structure

of reference frames that partition the map.

Algorithm 1 InitRefFrames (Xfree,B)

1: R = ∅, b = ∅
2: for each Bk ∈ B do
3: b← b ∪ bk randomly sampled from Bk

4: c← Randomly sampled from Xfree

5: while ∃bk, bk′ , c ∈ Line( bk, bk′ ) do
6: c← Randomly sampled from Xfree

7: for each bk ∈ b do
8: lk ← Line( bk, c )
9: {lkm} ← Intersect(lk,B, c)

10: R← R ∪ {lkm}
return R

The method Line(p1, p2) returns the line defined by p1 and p2, and the method

Intersect(r,B, c) returns all segments of line r that don’t intersect with an obstacle in B

or the center point c.

If we assign an ID character to each reference frame, then how a path sequentially

crosses the reference frames can be converted into a string of ID characters. For example, in

Figure 7.1a, the path that starts in subregion S4−0 and ends in subregion S1−1 sequentially

visits the reference frames α1,1, α2,2, α2,3. Concatenating these characters yields the path string

α1,1α2,2α2,3. A deterministic finite automata (DFA) formalizes this process; see Figure 7.1b.

Definition 2. Let M = (S,R, δ, S0, ST ) be a DFA that represents the string generation

process from a path, where S is a set of subregions, R is a set of reference frames, S0 ∈ S is

the start subregion, ST ∈ S is the end subregion, and δ : S×R→ S is the transition function

that defines how one subregion transitions to another subregion by crossing one reference

frame in R. A string v is created as follows:

136



www.manaraa.com

• v is initialized as an empty string ε.

• The path starts at xinit ∈ S0 and ends at xgoal ∈ ST .

• When there is a transition across a reference frame r ∈ R, v ← vr.

Thus, v is the string generated by a path through the map using M . A string block

Γv is the set of all paths that generate string v. We now develop conditions under which a set

of string blocks partition the set of all simple paths into a set of disjoint homotopy classes.

We present these as a series of properties, lemmas, and theorems.

Recall that we are restricting attention to simple paths, and let Γ denote the set of all

simple paths. We begin with properties of paths and the strings that they generate through

M . Property 1 states that there are a finite number of unique strings generated by M that

induce a partition over the Γ.

Property 1. Γ =
⋃m
i=1 Γvi and vi 6= vj ⇒ Γvi ∩ Γvj = ∅.

The second property is that ' is an equivalence relation.

Property 2. ' in Γvi ' Γvj is an equivalence relation.

Property 3 states that two paths are homotopic when they belong to the same string

block Γv. In other words, if σi and σj generate the same string v, σi and σj are homotopic.

Property 3. ∀σi, σj ∈ Γv, σi ' σj.

Property 4 states that if two touching paths σi and σj are concatenated together to

form σi ◦ σj then M generates a string vivj that is the concatenation of the strings generated

by the two individual paths vi and vj.

Property 4. If σi ∈ Γvi , σj ∈ Γvj and σi(1) = σj(0) then σi ◦ σj ∈ Γvivj .

To determine the homotopic equivalence of two paths that belong to different string

blocks, we remove an ambiguity from M . Observe that the reference frames form a radial

structure emanating from the center point c. We denote the set of all reference frames segments
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between the center point c and an obstacle boundary by Rc and the set of subregions that

connect with the center point c by Sc.

Property 5. A path segment that sequentially crosses several reference frames in Rc between

two different subregions in Sc is homotopic to a path segment that crosses only the center

point c.

For example, in Figure 7.2a, two paths with different strings α2,0α1,0 and α1,1α2,1

indicate two paths in the same homotopy class. By Property 5, we have Γα2,0α1,0 ' Γc '

Γα1,1α2,1 . Figure 7.2b illustrates a second example.

(a) Example A (b) Example B

Figure 7.2: Equivalence in Homotopy.

An important consequence of Property 5 is that paths that only go through regions

Sc are homotopic to a simple path segment that starts and ends at the same position within

Sc. Furthermore, all of these paths are homotopic to a path that generates the empty string.

This means that we can merge all the subregions in Sc into a new subregion Ŝc. We can now

create a new DFA, illustrated in Figure 7.1c, that removes the ambiguity associated with the

center region.

Definition 3. Let Mh = (Sh,Rh, δh, Sh0 , S
h
T ) be a homotopic DFA that represents the string

generation process from a path, where Sh = (S \Sc)∪{Ŝc} is a set of subregions, Rh = R\Rc

is a set of reference frames, Sh0 ∈ Sh is the start subregion, ShT ∈ Sh is the end subregion, and
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δh : Sh ×Rh → Sh is the transition function that defines how one subregion transitions to

another subregion along the path by reference frames in Rh. Strings are generated as follows:

• v is initialized as an empty string ε.

• The path starts at xinit ∈ Sh0 and ends at xgoal ∈ ShT .

• When there is a transition across a reference frame r ∈ Rh, v ← vr.

• When there is transition Rc, v ← vε = v.

Now that we have removed this ambiguity, we observe an important relationship

between a simple path and the string that Mh generates from this path. Let v = Mh(σ)

denote the string generated from a path σ.

Property 6. A duplicate ID character in a string Mh(σ) indicates that σ has visited a

subregion at least twice.

We call strings that don’t have duplicate ID characters non-repeating strings v∗. Non-

repeating strings can only be generated by simple paths that never leave a subregion by

crossing a reference frame and then returning by recrossing that same reference frame. This

implies the next property.

Property 7. In every simple homotopy class there exists a path σ such that Mh(σ) has no

duplicate characters.

Consider a string constructed in the following manner: begin with the empty string

ε and recursively insert a palindromic substring wwR, where the R operator reverses the

characters in the string, into any position of a string. We denote a string made up of

recursively embedded palindromic substrings an REP string. Note that ε and strings of the

form wwR are REP strings.
We now present the culminating lemma of this subsection.

Lemma 1. If σ is a simple path segment that begins and ends in the same subregion and

encloses no obstacle, then Mh(σ) is a REP string.
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(a) Before deformation (b) After deformation

Figure 7.3: Path deformation.

Proof. The proof is by induction on the number of subregions visited by a path.

• Base case: If a simple path segment σ never leaves a subregion then Mh(σ) = ε.

• Induction step: Assume a simple path segment σ that begins and ends in the same

subregion, and Mh(σ) is a REP string. Deform the path segment σ into a different

simple segment σ′ by crossing only one more reference frame with ID q, as illustrated

in Figure 7.3. Mh(σ′) is Mh(σ) embedded with qq, where qq = qqR is a palindromic

substring. Thus, Mh(σ′) is also a REP string.

• Conclusion: Any simple path segment σ that begins and ends in the same subregion

can be obtained by recursively applying deformation to a simple path that never leaves

a subregion in the inductive step.

A useful consequence of this Lemma is the following.

Corollary 1. All simple paths that begin and end in the same subregion and enclose no

obstacle are homotopic to each other and to a path σ such that Mh(σ) = ε.

7.3.2 Identifying the Equivalence

Having characterized several relationships between a path σ and its corresponding string

Mh(σ), we now want to identify string properties that tell us when two paths are homotopic.
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Figure 7.4: A hierarchy of path partitions.

Although Property 3 tells us that two paths are homotopic when they are in the same string

block, we need more. Specifically, we also need to know when two paths from different string

blocks are homotopic.

Write the set of all the simple paths as the union of several homotopy classes Γ =

Γh1 ∪ Γh2 · · · ∪ Γhg , in which Γhi is the set of all the paths in homotopy class hi. By Property

1 and Property 3, we know that each homotopy class is a union of several string blocks, that

is Γhi =
⋃

Γvji
. Let Vi denote the set of strings vji associated with the homotopy class hi, and

define ΓVi =
⋃

Γvji
.

Property 8 tells us that given a homotopy class hi and its corresponding Vi, if

Mh(σ) ∈ Vi, then σ ∈ Γhi , and vice versa.

Property 8. ∀Γhi ,∃Vi = ∪vji ,Γhi = ΓVi = ∪Γvji
.

This induces a hierarchy of path partitions and their associated string patterns, as

illustrated in Figure 7.4.

This hierarchy tells us that we can identify the homotopy class of a path, σ ∈ Γhi , by

finding Mh(σ) ∈ Vi.

We now show that we can use a non-repeating string v∗ to determine whether Mh(σ1)

and Mh(σ2) belong to the same Vi. We begin with Lemma 2, which shows that every path

is homotopic to a path that generates a non-repeating string.

Lemma 2. ∀v,∃v∗,Γv ' Γv∗
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Proof. Every path in a homotopy class is homotopic to the shortest path in that same

homotopy class. By Property 7, the shortest path generates a non-repeating string v∗, which

means Γv ' Γv∗ .

The next lemma states that any two different non-repeating string blocks are not

homotopic.

Lemma 3. If v∗i 6= v∗j then Γv∗i 6' Γv∗j .

Proof. Assume that ∃v∗i 6= v∗j such that Γv∗i ' Γv∗j . Let σi ∈ Γv∗i and σj ∈ Γv∗j . Because σi

and σj are homotopic to each other, we can assume without loss of generality that σj and σi

end at the same point, σi(1) = σj(1). Again because σi ' σj, the continuous path formed

when we connect σi to σRj (s) = σj(1− s), a reversed version of σj, encloses no obstacle. By

Lemma 1, Mh(σi ◦ σRj ) is a REP string. Observe that Mh(σi ◦ σRj ) = v∗i v
∗R
j by construction.

The only way to cut a REP string v into two non-repeating strings is that the number of

any character in the REP string v is two and the REP string v is palindromic. Cutting the

palindromic string v in the middle gets v1 and v2, in which v1 = vR2 . But since v∗i 6= v∗j , then

v∗i v
∗R
j cannot be a REP string.

This implies that each Vi associated with each homotopy class Γhi contains only one

non-repeating string.

Theorem 1 characterizes the relationship between Vi and its one and only non-repeating

string v∗i .

Theorem 1. For all Vi there exists a unique non-repeating string v∗i ∈ Vi, such that ∀vji ∈

Vi,Γvji
' Γv∗i .

Proof. Lemma 2 states that such a string much exist and Lemma 3 states that this string is

unique.

The next theorem gives us a construction by which we can identify the non-repeating

string representative from for each Vi.

142



www.manaraa.com

Theorem 2. Removing all the REP substrings of Mh(σ) yields the v∗i for which ΓMh(σ) ' Γv∗i .

Proof. The differences between Mh(σ) and v∗i are the REP substrings Mh(σ). The REP

substrings are generated by adding a path segment that leaves a subregion by crossing one or

more reference frames and then returning across the same reference frames in reverse order.

By Lemma 1, this path segment is homotopic to a path σ ∈ Γε (empty string). By Property

4, we have ΓMh(σ) ' Γv∗i .

This gives us a powerful tool for finding when two strings represent homotopic or

non-homotopic paths. Consider Algorithm 2, which removes REP substrings using the simple

principle that if a character is on the top of the stack when you encounter the next one,

you’ve found a REP substring and should eliminate it from the string.

Algorithm 2 REPTrim(v)

1: stack T = ∅
2: for char ∈ v do
3: if Top(T ) == char then
4: Pop(T )
5: else
6: T ← char

return T

When combined with Theorem 2, this has the marvelous effect of finding a non-

repeating string called REPTrim(v) such that Γv ' ΓREPTrim(v)
. This yields the following

corollary.

Corollary 2. REPTrim(Mh(σi)) = REPTrim(Mh(σj)) iff σi ' σj.

7.4 Homotopy-aware RRT*

Corollary 2 gives us a useful way to determine whether two paths belong to the same homotopy

class, but it doesn’t tell us anything about how to construct the path that minimizes the cost

objective within that homotopy class. This section uses a heuristic based on the REP trim

algorithm to restrict paths generated by RRT* to a desired homotopy class. Future work
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will explore improved heuristics and better variations of RRT* using the explicit REP Trim

algorithm.

RRT* explores the map to generate an optimal tree structure based on the cost

distribution on the map. While the tree structure explores the planning space, the DFA Mh

can be used to generate the strings of the branches. The string of each branch indicates the

homotopic information of the corresponding subpath. The resulting algorithm, Algorithm 3,

is called Homotopy-aware RRT* (HARRT*).

Algorithm 3 HARRT* (xinit, xgoal)

1: i← 0
2: Ns ← {xinit}; Es ← ∅; Ts ← (Ns, Es)
3: Ng ← {xgoal}; Eg ← ∅; Tg ← (Ng, Eg)
4: while i < N do
5: Ts, x

new
s ← Explore(Ts, i)

6: Tg, x
new
g ← Explore(Tg, i)

7: ps ← Connect(xnews , Tg)
8: pg ← Connect(xnewg , Ts)
9: P ← UpdateBestPathByClass(ps, P )

10: P ← UpdateBestPathByClass(pg, P )
11: i← i+ 1

12: P ← MergePaths(P ) return P

The algorithm uses a bi-directional structure. There is a start tree Ts = (Ns, Es),

which is an RRT* structure from the start position for the optimal cost-to-arrive. Ns is

the set of vertices in Ts, and Es is the set of edges in Ts. Similarly, there is a goal tree

Tg = (Ng, Eg), which is an RRT* structure from the goal position for the optimal cost-to-go.

In each iteration, a new vertex is created and added to each tree using Explore().

Connect() is then called to create a path with a vertex in the other tree. In order to

guarantee optimality, a set of near vertices in Tg is provided to find the best vertex to

be connected with the new vertex xnews in Ts, and vice versa. The created path will be

compared with the current best path that belongs to the same string block. If it is a

better one, the best path in this string block will be updated, which is implemented in

UpdateBestPathByClass().
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Algorithm 4 Explore(T, i)

1: xrand ← Sample(i) ;
2: xnearest ← Nearest(T, xrand)
3: xnew ← Steer(xnearest, xrand, η)
4: if ObstacleFree(xnearest, xnew) then
5: s← STR(xnearest) ◦ CRF((xnearest, xnew))
6: if StringCheck(s) then
7: xmin ← xnearest
8: Xnear ← Near(T, xnew, |N |)
9: for each xnear ∈ Xnear do

10: if ObstacleFree(xnew, xnear) then
11: s← STR(xnear) ◦ CRF((xnear, xnew))
12: if StringCheck(s) then
13: if Cost(xnear) +c( Line(xnear, xnew) ) < Cost(xnew) then
14: xmin ← xnear
15: E ′ ← E ′ ∪ {(xmin, xnew)}
16: for each xnear ∈ Xnear \ {xmin} do
17: if ObstacleFree(xnew, xnear) then
18: s← STR(xnew) ◦ CRF((xnew, xnear))
19: if StringCheck(s) then
20: if Cost(xnear) > Cost(xnew) + c(Line(xnew, xnear)) then
21: xparent ← Parent(xnear)
22: E ′ ← E ′ \ {(xparent, xnear)}
23: E ′ ← E ′ ∪ {(xnew, xnear)}

return T, xnew
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Algorithm 4 gives the exploration process of a tree structure and is similar with that

used in RRT* [59]. The first difference is that the string associated with each branch is

updated (implementing Mh on that branch) and the second difference is the use of the

StringCheck() method (implementing a heuristic version of the REP Trim algorithm) to

check whether the string of a branch satisfies the string constraint. The methods in Algorithm

4 are defined as follows:

• CRF(l): Return the ID characters that represent the crossed reference frames of a line

segment l if any.

• STR(x): Return the string that represents the crossed reference frames of the subpath

from the root to the node x sequentially. This implements Mh.

We assume that a human has specified one or more homotopy classes, and therefore

string blocks, as the constraint of the planned paths. StringCheck() compares whether

a string of a subpath is a substring of the strings generated by the human. In effect, this

eliminates branches that deviate from the non-repeating string representation of the human

constraint. It is a heuristic because it does not test whether a branch has a REP substring

but rather prevents RRT* from exploring branches that might have such substrings. Notice

that the goal tree Tg compares the strings in a reversed order.

Because RRT* maintains a tree structure, each vertex has only one path to arrive

from the root. This path, which starts from the root to the vertex, can be converted into a

string of ID characters by Mh. The StringCheck() guarantees that a new node is added

or rewired so that all the branches of the tree structure are in the constraint of strings. For

example, suppose we have a string constraint “ab”. A branch of the start tree Ts with string

“a” satisfies the constraint, because “a” can be extended into “ab” by concatenating a “b”.

However, a branch beginning with string “b” cannot be extended into “ab”, and therefore

does not satisfy the string constraint. It is similar for the goal tree Tg but with reversed

string order. Note that this is an early check of the homotopy class constraint and may
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eliminate some paths that would explore areas outside of the current subregion; we will say

more about this in the results section.

Algorithm 5 Connect(xnew, T )

1: pmin = ∅
2: Xnear ← NEAR(T, xnew, |N |)
3: for each xnear ∈ Xnear do
4: if ObstacleFree(xnew, xnear) then
5: if xnew ∈ Ts then
6: p← Concatenate(xnew, xnear)
7: else
8: p← Concatenate(xnear, xnew)

9: if StringCheck(p) and c(p) < c(pmin) then
10: pmin = p

return pmin

The methods in Algorithm 5 are defined as follows:

• Path(v, T ): Return the path from the root of the tree T to the vertex v.

• Concatenate(pa, pb): Return a concatenated path of pa and pb. If pa and pb are from

different directions, one of them will be reversed for the concatenation.

When the exploration process is finished, there is a set of the best paths of all the

string blocks. By the REP Trim algorithm we can merge the optimal paths in the string

blocks that belong to the same homotopy class. The MergePaths() merges the equivalent

string blocks into homotopy classes. Thus, the set of paths P will be updated.

7.5 Experiments

Recall the following claim from the introduction: “The contribution of this paper is an

algorithm that has guaranteed properties ... [that] create a set of path affordances that allow

a human to specify a wide range of hard and soft constraints that the robot is guaranteed to

honor when it plans its path.” To this point in the paper, all the text has focused on either

the theoretic analysis of Palindrome Trim algorithm or the heuristic implementation of this
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algorithm to help RRT* restrict exploration to a given homotopy class. This section provides

evidence that the algorithm can support an important need in HRI.

Consider a path-planning problem where a human supervisor defines the task for

a robot. Consider further different ways in which the human can express hard and soft

constraints as well as performance objectives. The first two examples of human intent

translate into homotopic path constraints over an optimization problem. Note that we use

the word “quickly” to represent the optimization criterion; in practice, many possible criteria

exist.

1. Quickly go from point A to point B through a sequence of specific regions. Topologically,

such a path is constrained to one homotopy class, so this homotopy class becomes

the constraint of the optimization problem and “quickly” becomes the objective to

optimize [49].

2. Quickly go from point A to point B making sure to visit some regions and avoid other

regions. Topologically, such a path is constrained to be among the set of homotopy classes

that include the desired regions and avoid the undesired regions. The corresponding

homotopic constraint restricts the optimal path to the set of homotopy classes that

satisfy the requirements.

The next example of human intent allow a human to express preference among different

path shapes, but also allow the human to trade off between following a desired path shape

and optimizing another performance objective.

3. In quickly going from point A to point B, I prefer some types of paths over others, but I

recognize that tradeoffs may be needed. This indicates that the human has preferences

over different homotopy classes, and also acknowledges that certain homotopy classes

may not allow an acceptable optimization of another task-based objective. If the

preference on the homotopy classes can be modeled using an objective function, then

non-dominant solutions over the task-based objective (e.g., “quickly”) and homotopic
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(a) Example A (b) Example B

Figure 7.5: Optimal paths with hard constraints.

objective (e.g., “north of building A”) can be found, and the human can select one of

these solutions by balancing tradeoffs.

Clearly, these examples do not cover the set of all possible ways a human can express intent,

but they do represent an important (and we would argue a natural) subset of ways that a

human can express intent.

In the results in this section, we use the Euclidean distance as the objective to minimize

because optimality can easily be verified. The objective can be replaced with any other type.

7.5.1 Single Homotopy Class

This subsection considers the first way of expressing intent: Quickly go from point A to point

B through a sequence of specific regions. In this case, the algorithm simply seeks to find the

path that minimizes the Euclidean distance between two points subject to the path belonging

to a homotopy class.

Figure 7.5 shows results for two different worlds. In Example A, the authors sketched

the fuzzy red path, turned that path into a single homotopy constraint, and then used

the HARRT* algorithm to find the shortest path that connected the points subject to the

constraint. The green radial lines indicate the reference frames, the yellowish lines indicate

the branches of the forward tree of the RRT, the turqoise lines indicate the backward tree of
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the RRT, and the orange line represents the path found by the algorithm. Inspection shows

that that the path is indeed the shortest path within the homotopy class. Further inspection

shows that the algorithm concentrated its search effort in the homotopy class, abandoning

branches of the tree either when costs became high or when the path crossed a reference

frame that deviated from the non-repeating string pattern. Example B shows a similar result

but with the human input suppressed to help improve clarity.

Figure 7.5 also illustrates that the current implementation of HARRT* is an approxi-

mation. The theoretic results show that we can determine when any two paths are in the same

homotopy class by removing REP substrings, but where we check for homotopic consistency

in the RRT implementation has a big impact on how big the trees grow in the algorithm. At

one extreme, future work should explore whether it is possible (a) to check the homotopy

class of the path returned by the RRT-based exploration once a complete path from start to

finish has been found and (b) to reject paths that do not satisfy the homotopy constraint. In

the current version of HARRT*, the StringCheck() method prevents the extension of the

branches into a string that does match the non-repeating string. This is an “early check” on

the path that can reject potentially optimal paths within a homotopy class if the optimal

path would naturally generate some REP substrings.

As illustrated by the simple examples in this section, this “early check” avoids exploring

a lot of the state space, resulting in search efficiency and producing acceptable paths, but

it is possible to construct examples where this early check would prevent the discovery of

the optimal path. Future work should explore variations of the StringCheck() method

that allow a budgeted amount of deviation from a path that generates a non-repeating string.

For example, the algorithm could allow a two character palindrome to be part of the string,

allowing exploration of paths that leave a subregion to avoid an area of high cost and then

return to the subregion once they have circumvented the high cost area. Certainly, this future

work would need to explore tradeoffs in the deviation budget, the spacing of sample points

that generate the radial structure, and the structure of the cost function.
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(a) Single directional tree (b) Bidirectional tree

Figure 7.6: Search results from different structures.

We conclude this subsection with an example world that exposes a problem that is

avoided by the bi-directional approach we have taken but which a single direction RRT

encounters.

Figure 7.6 gives the results from the single directional and bidirectional tree structures

for a problem where multiple homotopy classes are allowed. Each tree structure finds an

optimal path in each of several homotopy classes (though the optimal path is shown for

only one homotopy class) optimal paths in several homotopy classes but only one of them

is illustrated, but the single directional tree structure could not find an optimal path that

swings by the left side of the left-most obstacle; see Figure 7.6a. By contrast, the via-point

constraints in the bidirectional tree structure enforce the exploration of all the possible

homotopy classes; see Figure 7.6b.

Although this result is encouraging, it exposes a challenge in combining RRT* with

the Palindrome Trim algorithm or a related heuristic. Stated simply, it is possible for RRT*

to “rewire” nodes in such a way that homotopy constraints are violated. Using bidirectional

search fixed the problem for this world, but it is easy to construct other worlds for which

bidirectional search won’t work. Future work will address this challenge.
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Figure 7.7: Optimal paths in six homotopy classes.

7.5.2 Multiple Homotopy Classes

This section considers the second way of expressing intent: Quickly go from point A to point

B making sure to visit some regions and avoid other regions. In this case, the set of regions

to visit and regions to avoid create a set of possible homotopy classes.

This section gives an example of the kinds of possible solutions that can be generated

when multiple homotopy classes are explored simultaneously. Figure 7.7, which will be

referenced again in the next section, shows the optimal solutions returned by HARRT* for

six different homotopy classes. Observe that each path is optimal for the homotopy class

given that the cost function is Euclidean distance. (As an aside, when the cost function

is Euclidean distance the heuristic implementation of the REP trim algorithm won’t cause

problems since the shortest path is also a path that generates a non-repeating string.) For

this second type of human intent expression, the path with the lowest cost would be returned.

7.5.3 Soft Constraint and Tradeoffs

This section considers the third way of expressing intent: In going from point A to point B,

I prefer some types of paths over others, but I recognize that tradeoffs may be needed. This
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method is actually quite different than the two previous methods because it treats path shape

not as a hard constraint but rather as an objective to be optimized. Fortunately, HARRT*

can support a human trying to find tradeoffs between preferences among homotopy classes

and the costs associated with choosing a path from a specific homotopy class.

The algorithm for finding these tradeoffs would use HARRT* to find the optimal

path from the set of all relevant homotopy classes, as was done in the previous subsection.

Recall that HARRT* can simultaneously search in different homotopy classes and returns the

solutions in one run. The output of the algorithm would then change its what it presents to

the human; rather than returning the best path across homotopy classes as in the previous

subsection, the algorithm would find the minimum cost path for each homotopy class and

then output both the path and the cost of the path for each homotopy class. This generates

a tradeoff space that can be evaluated by the human.

For example, Figure 7.7 shows the optimal paths in six different homotopy classes

found by HARRT*. Associated with each class/path pair is the cost of the optimal path. If

the cost is displayed for each class/path pair, a human could determine which shape/cost

pair provides the best tradeoff.

7.6 Conclusion and Future Work

It is possible to create a computationally efficient algorithm that uses strings to determine

when two continuous paths are homotopic. This algorithm can be used as a heuristic in a

bi-directional RRT* algorithm to prune paths from the search that are not compatible with

an intended homotopy class. Furthermore, the algorithm seems compatible with various

degrees of approximation, allowing for tradeoffs between computation speed and quality of

the path found by the algorithm, but future work must confirm this.

The paper did not explore the usability, workload, or naturalness of the interactions

between the human and the robot afforded by the algorithm, but the empirical results suggest

that efficient interactions are plausible given the properties of the algorithm. Future work
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should explore how natural language or a graphical user interface can be combined with the

algorithm, and whether resulting interactions are compatible with human workload bounds

and situation awareness needs.

Finally, future work should explore how the homotopy-aware RRT* algorithm can

be extended to problems with multiple performance objectives, enabling either hard shape

constraints or tradeoffs between a set of objectives and the shape of the resulting path.
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Chapter 8

Topology-Aware RRT* for Parallel Optimal Sampling in Topologies 1

Abstract

In interactive human-robot path-planning, a capability for expressing the path topology

provides a natural mechanism for describing task requirements. We propose a topology-aware

RRT* algorithm that can explore in parallel any given set of topologies. The topological

information used by the algorithm can either be assigned by the human prior to the planning or

be selected from the human in posterior path selection. Theoretical analyses and experimental

results are given to show that the optimal path of any topology can be found, including a

winding topological constraint wherein the robot must circle one or more objects of interest.

1To appear in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Authors
are Daqing Yi, Michael A. Goodrich, Thomas M. Howard and Kevin D. Seppi.
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8.1 Introduction

Robot path-planning is commonly modeled as path optimization. In path optimization, the

topology of the path is often ignored because it can be difficult to quantify, but the topology

can be critical to real-world performance. There are many scenarios that require considering

the topologies of paths: in collaborative search, the navigation of a robot can be constrained

by a human’s trajectory [124]; in surveillance, the movement of robot can be constrained to

circle regions of interest [83]. In following a demonstration, a robot needs to follow a coarse

path topology obtained from a human [105]. Topology can also be used to help find similar

paths in re-planning.

In human-robot interaction, specifying path topology is a straightforward way for

a human to describe a task. Because a human is better at high-level reasoning, directly

expressing a topological requirement simplifies the path planning for a robot. For example,

both avoiding risky regions or visiting regions in some temporal sequence define or at least

constrain the eligible topological shapes. This kind of topological information often indicates

that only part of region needs to be considered in planning, which reduces the planning cost.

We propose a path-planning algorithm that supports topological constraints, including

multi-class topological constraints. This algorithm explores in parallel all paths within each of

a set of topological constraints and does so using a shared structure for the identical section

of topologies. The topological information can either be assigned prior to the planning or be

queried during posterior path selection.

8.2 Related Work

In path-planning problems, we are interested in comparing the topologies of two paths σ1 and

σ2 that share the same start position and the same end position. σ1 and σ2 are homotopic iff

one can be continuously deformed into the other without intersecting any obstacle [11]. A

homotopy class is defined as a set of paths that are homotopic.
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An approximation of homotopy is homology, which can be identified a complex

analysis [12]. In this approach the 2D plane is modeled as a complex plane, and there is a

point marked as undefined in each obstacle. By comparing the complex integral values along

pairs of paths, homologous paths can be identified. In a similar way, paths are classified by

homological equivalence by Delaunay-Čech complex values [90].

By approximating obstacles by polygons, a triangulation can be created to generate

lines that divide the map [36], but when obstacles are not polygons, the complexity grows

quickly. Another approach is to create parallel, non-intersecting rays from representative

points in obstacles [62]. These rays are independent of obstacle shape. In order to support

winding paths, which are self-intersecting paths (paths with loops), virtual sensor beams

created from obstacles have been used to identify homotopies [105, 119]. In a similar way, a

radial structure can be used that generates reference frames connecting obstacle [47].

Sampling methods have been widely used to perform efficient path-planning. RRT* [60]

exploits sampling efficiency and guarantees that it will find the optimal path in the limit

as samples grow. An RRT* approach has also been combined with the ability to identify

completely the homotopic equivalence of two paths in 2D using a homotopic Deterministic

Finite Automata(DFA) [128]. In that work the homotopic equivalence of two arbitrary

paths could be determined using properties of strings recognized by the DFA, but the RRT*

implementation did not fully exploit this capability.

Most of these algorithms lack completeness analyses, that is, there is no guarantee

that the homotopy class can be identified for every path. Importantly, many of the homotopy-

and homology-based algorithms only support finding the shortest path [39] or a feasible

path [47] rather than an optimal path with respect to general objective functions. There is

still a need for a complete path-planning algorithm that is capable of exploring any topology

class, including winding topologies, and that guarantees that the optimal path within the

topology class will be found.
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8.3 Path Homotopy Identification

A simple path is defined as a path that does not enclose any obstacle and a simple homotopy

class is a set of simple paths that are homotopic to each other. Prior work showed that

an equivalent definition of a simple homotopy class is a homotopy class that contains at

least a path that has no duplicate character [128]. This paper extends prior work to the

identification to all kinds of paths, including non-simple paths. This section briefly reviews

the decomposition method in [128] and proves that homotopic equivalence can be identified

by comparing strings.

8.3.1 Homotopic DFA Strings

The following decomposition method, introduced in [128], uses a homotopic DFA, Mh, that

converts a path σ into a string v. First, a point bk is randomly sampled in each obstacle

Bk ∈ B as a representative point. A representative point is not allowed to lie on any line

that connects any two other representative points. Second, a center point c is randomly

sampled in the non-obstacle region which does not lie on any line that can be created from

any two representative points from different obstacles. Third, starting at the center point a

ray can be created to each representative point. Fourth, the radial structure is cut into a

set of line segments by the obstacles. The set of line segments are used as a set of reference

frames R, which separate the map into a set of subregions S. Figure 8.1a shows an example

decomposition. In this example, the map is cut into four subregions, R1, R2 ,R3 and R4. The

green line segments are the reference frames that define how the subregions are connected. A

topology about how the subregions are connected is shown in Figure 8.1b. The start is an

orange point and the goal is a blue point.

An ID character is assigned to each reference frame so that a sequence of crossed

reference frames can be represented by a string of ID characters. The resulting strings can be

used to identify homotopic equivalence. The homotopic DFA defined in [128] performs the

conversion of a path into a string representation v = Mh(σ). Homotopic DFA terminology is
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Figure 8.1: Map decomposition and its topology.

as follows: the set of reference frames that connect with the center point c is denoted Rc and

the set of subregions that connect with the center point c is denoted Sc. A new subregion Ŝc

is created by combining all the subregions in Sc. A string block Γv is the set of all paths that

yield the same string v.

We now review a sequence of important properties of strings produced by the homotopic

DFA [128]. Two paths in the same string block are homotopic — Property 1.

Property 1. ∀σi, σj ∈ Γv, σi ' σj.

Because all the paths in a string block are homotopic, each homotopy class Γ consists

of infinitely many string blocks — Property 2.

Property 2. Γ =
⋃∞
i=1 Γvi and vi 6= vj ⇒ Γvi ∩ Γvj = ∅.

The union in Property 2 is over an infinite number of subsets because a sub-path can

visit arbitrarily many subregions and backtrack without enclosing an obstacle, which results

in strings of arbitrary lengths. Consider a string constructed as follows: begin with the empty

string ε and recursively insert a palindromic substring wwR, where the R operator reverses

the characters in the string, into any position of a string. A string made up of Recursively

Embedded Palindromic substrings is denoted an REP string [128]. Note that ε and strings

of the form wwR are REP strings.

The shortest string in a homotopy class, denoted v∗, is not an REP string. Each

homotopy class can be represented using this shortest string — Property 3.
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Property 3. ∀v,∃v∗,Γv ' Γv∗

Since the shortest path in a homotopy class does not contain a subpath that visits

several subregions and backtracks, the Homotopic DFA represents the shortest path in a

homotopy class by the shortest string v∗. Algorithm 2 in [128] removes REP substrings by

sequentially pushing characters from the string onto a stack unless the character at the top

of the stack matches the next character in the string [128]. If the top of the stack and the

next character match, the stack is popped to eliminate the palindromic structure.

Consider two paths in the same homotopy class, σ and σ∗. Suppose that σ∗ is the

shortest path. REPTrim() converts string v = Mh(σ) into v∗ = Mh(σ∗) — Property 4.

Property 4. v∗ = REPTrim(v).

The homotopic DFA converts two concatenated paths into two concatenated strings.

Because of the recursive nature of Algorithm 2 in [128], these strings decompose into shortest

strings — Property 5.

Property 5. REPTrim(v1v2) = REPTrim(v∗1v
∗
2)

= REPTrim(REPTrim(v1)REPTrim(v2)).

Algorithm 2 in [128] will never have two consecutive characters the same in the stack.

This implies that there are no two consecutive characters that are the same in the output v∗.

Property 6. ∀i ∈ {1, . . . , |v∗| − 1}v∗[i] 6= v∗[i+ 1].

8.3.2 Identifying Homotopic Equivalence

We now extend results beyond prior work. We show that we can use the shortest string v∗ to

determine when two paths are homotopic. This requires two lemmas.

Lemma 1. REPTrim(v∗i v
∗
j
R) = ε⇔ v∗i = v∗j .

Proof. Suppose REPTrim(v∗i v
∗
j
R) = ε. When v∗i v

∗
j
R is input to REPTrim(), v∗i is pushed onto

the stack first. The no duplicate character property of shortest strings, Property 6, means
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that the entire string v∗i will be on the stack. Thus, the length of the stack is |v∗i |. In order

to get an empty string ε as the output, the stack needs to be cleared. This requires that

|v∗i | = |v∗j R| and v∗i
R = v∗j

R, which implies that v∗i = v∗j .

Conversely, when v∗i = v∗j , simulating stack pushes/pops shows that REPTrim(v∗i v
∗
j
R) =

REPTrim(v∗i v
∗
i
R) = ε.

We also have Lemma 2 for an equivalence in the path space.

Lemma 2. σ1 ' σ2 ⇔ REPTrim(Mh(σ1 ◦ σR2 )) = ε.

Proof. Suppose σ1 ' σ2. Concatenating σ1 with a reversed σ2 creates the path σ1 ◦σR2 , which

encloses no obstacle by the definition of homotopy. σ1 ◦ σR2 is homotopic to the (closed) path

that starts and ends at the same position, σ1(0). Since this closed path encloses no obstacle,

σ1 ' σ2 ⇒ σ1 ◦ σR2 ' σ1(0). This means that the closed path σ1 ◦ σR2 recursively visits several

subregions and backtracks, returning to the starting point. Applying REPTrim() to such a

path yields the empty string.

Conversely, suppose REPTrim(Mh(σ1 ◦ σR2 )) = ε. We use a proof by contradiction.

Assume that σ1 6' σ2. By Property 5, REPTrim(Mh(σ1 ◦ σR2 )) = REPTrim(v∗1v
∗
2
R). By

Lemma 1, we have v∗1 = v∗2. Because σ1 6' σ2, let σ1 ∈ Γ1 and σ2 ∈ Γ2, we have Γ1 6' Γ2. Let

min len(Γi) = arg minσ∈Γi
|σ| be the shortest path in Γi. We have min len(Γ1) 6' min len(Γ2).

However, by the definition of the shortest string, Mh(min len(Γ1)) = Mh(min len(Γ2)) =

v∗1 = v∗2. By Property 1, it means that min len(Γ1) ' min len(Γ2). This is a contradiction.

By Lemma 2 and Lemma 1, we can derive Theorem 1.

Theorem 1. REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)) iff σ1 ' σ2.

Proof. Let v∗1 = REPTrim(Mh(σ1)) and v∗2 = REPTrim(Mh(σ2)).

When REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)), we have v∗1 = v∗2. By Lemma 1, we

know REPTrim(v∗1v
∗
2
R) = ε. Thus, REPTrim(Mh(σ1)Mh(σ2)

R
) = ε. By Lemma 2, we have

σ1 ' σ2.
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When σ1 ' σ2, we can create a path σ1σ2
R by concatenating σ1 and a reversed σ2.

Without loss of generality, we can assume that this path starts and ends at the same position.

By Lemma 2 and Property 5, we have ε = REPTrim(Mh(σ1σ2
R)) = REPTrim(v∗i v

∗
j
R). By

Lemma 1, we know v∗i = v∗j , which implies REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)).

Theorem 1 tells us that we can identify the homotopy of paths by comparing the strings

generated by the homotopic DFA after passing them through REPTrim Algorithm [128]. We

use this to create an RRT*-based planner that only generates solutions constrained to one or

more homotopy classes.

8.4 Topology-Aware RRT*

In this section, we propose a topology-aware random sampling algorithm that is derived from

the standard RRT* [60]. Assumptions from [60] about RRT* are inherited here. We are

interested in both non-simple paths and non-simple homotopy classes, but Property 2 implies

that there exists an infinite number of possible string blocks in a homotopy class. If we

assume the optimal path is not an infinitely long path (which will be true for cost functions

that monotonically increase with path length), the string produced by homotopic DFA for

optimal path will not be infinitely long. We state this assumption and use it to limit the

number of possible subtrees produced by our algorithm.

Assumption 1. ∀σ∗ = arg minσ∈Γ Cost(σ),∃τ ≥ 1, |v| ≤ τ |v∗| and σ∗ ∈ Γv.

In this assumption, the topological constraint is represented by the set Γ that contains

all homotopy classes consistent with this constraint. We assume that we can restrict search

to paths that (a) are in a homotopy class consistent with an optimal path and (b) do not

produce really long strings.

162



www.manaraa.com

8.4.1 Expanding Topology

The basic idea of the Topology Aware RRT* (TARRT*) algorithm is that the tree produced

by RRT* is “chunked” into subtrees when the paths in those subtrees produce different string

blocks; extension of the trees is restricted to only those string blocks that are consistent with

the desired topological constraint(s). The RRT* subtrees find the optimal path within each

string block, and the optimal path for the homotopy class is the best of the paths for the

string blocks.

We will be talking about two different trees: the tree produced by RRT* and the

tree of subtrees produced when we group the RRT* branches into string blocks. To help

distinguish between the elements of the tree of subtrees and the elements of the tree, we

will refer to the subtrees that belong to the same string block as a TARRT* node and the

individual elements of the complete tree as RRT* vertices.

Figure 8.2a illustrates a very simple world with four regions. These four regions are

separated by four reference frames, “A1,B1,A2,B2”, and the homotopic DFA adds the label

for these references frames to the string whenever the path crosses the reference frame. The

small red square indicates the start position and the small blue square indicates the goal

position. Thus, they represent different string blocks and different sequences of TARRT*

nodes that can be created.

Each TARRT* node is associated with a subregion, and each edge in TARRT* is

associated with a reference frame. There exist similarities between string blocks. For example,

all the string blocks start in the same initial subregion “R1”. The string block “B1,A2,B2,B2”

contains a substructure that is identical with the string block “B1,A2”. We can thus use

an expanding topology to efficiently express these string blocks, as shown in Figure 8.2c.

The root TARRT* node is always associated with the start subregion. Denote a TARRT*

node associated with the goal subregion as a terminal TARRT* node. Any path from the

root expanding node to a terminal TARRT* node defines a string block, which is called a

163



www.manaraa.com

R1 R2

R3 R4

A1 A2

B1

B2

(a) Decompose

R1 R2

R3

R4

A1

A2B1

B2 R4R1

R3A1 B2 R4R1 R2 R4A2A2

R1 R2 R4A2B1 R3B2 B2 R4

(b) String blocks

R1 R2

R3

R4

A1

A2B1

B2 R4

R3B2 B2 R4

R2 R4A2A2

(c) Expanding toplogy (d) Tree structure

Figure 8.2: Expanding Topology.

string-block branch of the TARRT* tree. In Figure 8.2c, each path from the TARRT* node

“R1” to a TARRT* node “R4” is within one of the string blocks in Figure 8.2b.

RRT* uses directed random sampling to create new possible nodes in the RRT*

subtrees. Since each one of the new possible RRT* vertices is located in a subregion, it is

possible that the location of the new node can be part of multiple string blocks and their

corresponding TARRT* nodes. If we can generate an optimal structure like RRT* but sorted

by string blocks, backtracking from a goal position in a terminal expanding node to the root

obtains the optimal path of the corresponding string block.

8.4.2 Topology-Aware Space Sampling

The TARRT* algorithm is given as Algorithm 1. It inherits optimal spatial sampling from

RRT* but the tree generation process is guided by an expanding topology of TARRT* nodes.

The branches of the tree are sorted by string-block branches of the expanding topology, like

in Figure 8.2d.
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The algorithm enforces a tree-of-subtrees structure by ensuring that the parent RRT*

vertex of any RRT* vertex can only be located (a) within the same TARRT* node as the

RRT* vertex or (b) in the parent node of that TARRT* node. Moreover, if an existing RRT*

vertex is linked with a new RRT* vertex, the edge between those vertices visit reference

frames as defined in the expanding topology of TARRT* nodes.

For example, consider the string block “B1, A2” at the top of Figure 8.2b and an

RRT* vertex in the TARRT* node “R4”. If the RRT* vertex has a parent in TARRT* node

“R2”, the edge between child and parent should cross the reference frame “A2”. If the RRT*

vertex has an edge connecting to a grandparent RRT* vertex in TARRT* node “R1”, the

edge should cross the reference frames “B1”,“A2” sequentially. If an RRT* vertex has an

edge towards a node in the TARRT* node “R3”, the edge violates the requirement of this

string block and should not exist.

Algorithm 1 Topology-Aware Rapidly-exploring Random Tree* G(V,E)

1: V ← {xinit}; E ← ∅; i← 0
2: while i < N do
3: xrand ← Sample (i) ; i← i+ 1
4: xnrst ← Nearest (G, xrand)
5: xnew ← Steer (xnrst, xrand, η)
6: if ObstacleFree(xnrst, xnew) then
7: R = Region ( xnew )
8: for each tarrt node in TarrtNodes ( R ) do
9: tarrt node← xnew

10: G← Extend (G, xnew, xnrst)

Because a subregion is associated with multiple TARRT* nodes, for each new position

obtained via directed sampling in RRT* a new RRT* vertex will be created in each relevant

TARRT* node; relevant TARRT* nodes are those associated with the subregion in which

the new position lies. This means that when a new position is sampled, there are new RRT*

vertices created in several associated TARRT* nodes. For example, a new position (the

yellow square) is sampled in the subregion “R3”, as illustrated in Figure 8.3a. Two new
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Figure 8.3: Sampling and adding new nodes.

RRT* vertices of the position are added to the two TARRT* nodes, one for the top string

block topology and another for the bottom string block topology as shown in Figure 8.3b.

We now define several functions, using appropriately modified definitions from the

RRT* algorithm in [60].

• Sample(): Returns independent uniformly distributed samples from Xfree.

• Nearest(): Returns a position of the vertex whose position is closest to point x.

Nearest(G = (V,E), x) = arg minv∈V ‖x− v‖.

• Steer(): Given two points x and y, returns a point z on the line segment from x to y

that is no greater than η from y. Steer( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z − y‖.

• ObstacleFree(x, x′): Returns True if [x, x′] ⊂ Xfree , which is the line segment

between x and x′ lies in Xfree .

• Region(x): Returns the subregion that position x is in.

• TarrtNodes(R): Returns all TARRT* nodes from the expanding topology that are

associated with subregion R.

The RRT* vertices of the TARRT* tree are created and stored in TARRT* nodes.

This provides information for how to add connections between new positions to potential

parent RRT* vertices and also how to rewire RRT* vertices so that rewiring honors string

block constraints. Thus, the Extend procedure of TARRT* is slightly different with that in

RRT*. It is stated in Algorithm 2.

The precise definitions of the methods used in the Algorithm 2 are given below.
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Algorithm 2 Extend(G, xnew, xnearest)

1: if xnew = xnrst then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnrst
4: Xnear ← Near(G, xnew, |v|)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) and HomotopyEligible(xnew, xnear) then
7: c′k ← Costk(xnear) +ck( Line(xnear, xnew) )
8: if c′k < Costk(xnew) then
9: xmin ← xnear

10: E ′ ← E ′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if ObstacleFree(xnear, xnew) and HomotopyEligible(xnear, xnew) then
13: c′k ← Costk(xnew) +ck( Line(xnew, xnear) )
14: if c′k < Costk(xnear) then
15: xparent ← Parent(xnear)
16: E ′ ← E ′ \ {(xparent, xnear)}
17: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)

• Near(G, x, card): Returns all vertices within the closed ball of radius

γ = min{γRRT∗(log(card)/card)1/d, η} centered at x, in which

γ > (2(1 + 1/d))1/d(µ(Xfree)
ζd

)1/d [60].

• HomotopyEligible(xfrom , xto): Uses REPTrim() to return True if the sequence of

reference frames a line visits is consistent with a required sequence of reference frames.

The line is from xfrom to xto . The required sequence of reference frame is obtained by

the sequence of edges from the TARRT* node that xfrom is in to the TARRT* node

that xto is in.

• Line(x, x′) : [0, s]← Xfree denotes the path defined by line segment from x to x′.

• Cost(x): Returns cost of the unique path (because G is a tree) from xinit to the vertex

x ∈ V . Cost(xinit) = 0.
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(a) Minimum Distance (b) Maximum Safety

Figure 8.4: Optimality. τ = 1.

8.5 Experiments

This section presents a series of informative examples that illustrate how the TARRT*

algorithm works, that provide empirical support for the claims in the paper, and that

illustrate some useful properties of the algorithm. The examples include some use cases. The

first use case is when a human specifies a single homotopy class as the topological constraint

and the algorithm returns the optimal path subject to that constraint. The second use case

is when the human specifies some things to avoid; these are translated into a topological

constraint that includes multiple homotopy classes, and then the human selects from multiple

possible paths returned by the algorithm.

8.5.1 Optimality and Practicality

Figure 8.4 illustrates TARRT* for a homotopy class where the path is required to go above

the obstacle at the top of the world. Black blobs indicate obstacles. The orange line is a

found path from the start (red point) to the goal (blue point). The olive lines visualize the

tree structure generated by TARRT*. There are also green line segments that show the

reference frames associated with a string block in a homotopy class.

The algorithm behavior when path length is the objective is given in Figure 8.4a

and when minimizing distance to any obstacle is the objective is given Figure 8.4b. The

gray background shows the cost map distribution; darker means lower cost and the lighter
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Figure 8.5: Non-winding topology.

means higher cost. Because the two reference frames happened to be very close together, the

algorithm wastes a lot of time exploring to the lower left of the obstacles. Nevertheless, the

algorithm returns the shortest path and the minimum cost path, respectively, in the world.

8.5.2 Use Case 1

In a human-to-robot approach, a homotopy class is provided a priori by a human. Consider

the world illustrated in Figure 8.5 and two constraints provided by the human. In the

first constraint, the human draws a path that goes south of every obstacle. In the second

constraint, the human draws a path that goes to the west of the obstacle in the lower center of

the world. The human-drawn paths were translated into shortest strings using the REPTime

algorithm, and then string blocks that were consistent with these shortest strings were passed

to TARRT*.

Because a homotopy class from a human is given, subregions that are not associated

with the homotopy class need not be explored. As a result, the tree extends only to part

of the map and consists of fewer subregions. Figure 8.5 illustrates two examples where the

optimal paths for a cost of avoiding near approaches to obstacles can be found even when

only part of the map is explored. A tight constraint enhances efficiency.

So far, the examples have considered only simple homotopy classes. TARRT* is able

to find the optimal path of a winding topology. Figure 8.6b shows the optimal path of a

homotopy class that contains single windings of two different obstacles using minimum path

length as the objective. The reference topology was drawn by a human. Figure 8.6d uses a
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(a) Reference topology (b) Minimize path length

(c) Reference topology (d) Maximize safety

Figure 8.6: Wwinding topology.

topology constraint that winds around two obstacles for a cost function related to obstacle

proximity (darker is better).

8.5.3 Use Case 2

Suppose that the human only specifies a region to avoid, leaving many different homotopy

classes that might satisfy this constraint. In the extreme, suppose that the human wants to

see the lowest cost path for every possible topology. Finally, suppose that the human specifies

an upper bound on how long the path can be, which turns the problem from one of searching

through an infinite number of possible homotopy classes to searching the finite number of

classes that satisfy the stretching assumption (Assumption 1). Figure 8.7 illustrates TARRT*

exploring different homotopies in parallel. Each subfigure shows the portion of the TARRT*

tree relevant for one of the homotopy classes along with the best path from that homotopy

class.
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Figure 8.7: Multiple string blocks.

8.6 Summary

In this paper, we proved that the decomposition method and homotopic DFA can be

applied not only to simple paths but also to non-simple paths. We also proposed the TARRT*

algorithm, which provides an efficient sampling structure for exploring a topological constraint

over multiple homotopy classes. TARRT* enforces samplings that honor a set of possible

homotopy classes and rewires the RRT* tree so that it explores multiple homotopy classes in

parallel. TARRT* finds a solution for any homotopy class with finite length paths including

winding topologies.

Future work should apply TARRT* to different decomposition methods and in higher

dimension spaces such as in a robotic manipulation problem using a 3D decomposition method.

Practical complexity of the algorithm will likely become an issue for these problems.
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Chapter 9

Sampling-based Optimal Path Planning with Homotopy Class Constraints1

Abstract

Supporting homotopy class constraints enables a hierarchical framework of cooperative

path-planning consisting of high-level topological reasoning and low-level workspace planning.

Two phases of human interaction support this cooperative path-planning: (i) a human

provides one or more path topologies to guide the path-planning of a robot, and (ii) a

human select one path from the set of “best” paths associated with each path topology. This

paper enables these two phases by introducing a homotopic DFA that converts a path into

a string representation for identifying the homotopic equivalence of two paths. Embedding

the homotopic DFA in an RRT* structure allows the homotopic class of each branch to be

identified.

We propose two RRT*-based path-planning algorithms that use homotopic class

information, and show how these algorithms can be used to find optimal paths from certain

types of homotopy classes. The first algorithm uses a bidirectional structure that generates

paths from within a certain kind of homotopy subclass by via-point constraints so that

different homotopy subclasses can be efficiently explored. The second algorithm follows a

sequence-guided RRT* structure that guides the direction of branching, and finds optimal

paths from with general types of homotopy classes. We present a formal analysis of when

(i) solutions converge to optimal paths of a given homotopy classes or subclasses and (ii) all

1In preparation to be submitted to IEEE Transactions on Robotics. Authors are Daqing Yi, Michael A.
Goodrich, Kevin D. Seppi and Thomas M. Howard.
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homotopy classes can be explored, including winding homotopy classes. Empirical evaluations

are presented that support the theoretical analyses.
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9.1 Introduction

In many applications, a human will care about the shape of a path, but path shape is often

neglected in optimal path-planning, partly because path shape is difficult to encode as an

objective function to be optimized. This paper presents two algorithms for path-planning

that find optimal paths subject to one or more homotopy constraints, plus a small number of

technical path constraints, under the assumption that a human provides these constraints.

These path topologies indicate that only part of workspace needs to be considered in planning

if the constraint can be used to reduce the size of the search space that must be explored.

Consider how path shape, more precisely called topological information, is an important

human consideration in the following different scenarios: in collaborative search, the trajectory

of a human constrains the navigation of a robot who executes a subtask [123]; in surveillance,

a team supervisor gives a rough execution plan in the form of path topology that requires

the robot to maximize the performance subject to a topological constraint [83]; in following a

demonstration, a human sketches a coarse path topology to guide a robot’s navigation [105].

Moreover, real-time re-planning can theoretically use path topology to efficiently find similar

paths [20].

We are interested in path-planning problems where path shape is expressed as a

topological constraint. Such constraints can define single or multiple path topologies. For a

single-topology constraint, a planner only explores a partial workspace that is determined

by the topological information. For a multi-topology constraint, a planner parallel explores

multiple path topologies and may return multiple paths, one each for each topology.

This paper is extended from prior work by the authors in [128] and [127]. The paper

is outlined as follows: we introduce homotopic DFA that converts any path into a string.

The string that represents the topological information can be used to compare topological

similarity [128]. Two different path-planners were proposed in the prior work:, HARRT* [128]

and TARRT*[127]. These two planners have many things in common, so it is useful to study

them together. This paper adds a complete theoretical analyses of HARRT* and TARRT*,
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(a) Homotopy (b) Homology

Figure 9.1: Homotopy and homology of paths.

which includes optimality and completeness in homotopy-class exploration. Additionally,

more experiments are provided that help explain similarities, strengths and limitations of the

two algorithms.

9.2 Related Work

Consider path-planning problems where all feasible paths share the same start position and

end position. For such problems, the mathematical notions of homotopy and homology are

often used to compare the topologies of two paths. Two paths are homotopic iff one can be

continuously deformed into the other without intersecting any obstacle [11]. An example is

given in Figure 9.1a, which illustrates how path σ1 can be deformed into σ2 but not into

σ3 because of obstacle B1. σ1 and σ2 are homologous iff concatenating σ1 with a reversed

σ2 forms the complete boundary of a 2-dimensional manifold embedded in the space not

containing or intersecting any of the obstacles [11]. An example is given in Figure 9.1b, which

illustrates how the manifold created from σ1 and σ2 intersects no obstacle but the manifold

created from σ1 and σ3 would intersect an obstacle.

Paths can be categorized into classes by the equivalence in homotopy or homology. A

homotopy class (respectively homology class) is defined as a set of paths that are homotopic

(respectively, homologic). When two paths are homotopic, they are also homologous [83], but
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the converse is not always true [11]. This means that a homology class is a close analog of

homotopy class but they are not equivalent.

There have been algorithms created that use homologies to support path-planning.

[12] proposed a method of homology class identification by a complex analysis approach. In

this approach the 2D plane is modeled as a complex plane, and there is a point marked as

undefined in each obstacle. By comparing the complex integral values along pairs of paths,

homologous paths can be identified. In a similar way, paths are classified by homological

equivalence by Delaunay-Čech complex values [90].

Homotopy defines a stricter equivalence comparison, thus its identification is harder.

One approach to this problem is to use one of several methods (see below) that convert paths

into string representations. In these approaches, the map is decomposed into subregions by

line segments. The topology of a path is then associated with a sequence of visited subregions

or, equivalently, a sequence of crossed line segments. Each subregion or line segment is

identified by a token, and a topology is identified by a string of tokens. In such an approach

homotopic equivalence is determined by comparing strings.

By approximating obstacles by polygons, a triangulation can be created to generate

lines that divide the map [36, 49], but when obstacles are not polygons, the complexity grows

quickly. Another approach is to create parallel, non-intersecting rays from representative

points in obstacles [62]. These rays are independent of obstacle shape.

In order to support winding paths, which are self-intersecting paths (paths with loops),

virtual sensor beams created from obstacles have been used to identify homotopies [83, 119].

In a similar way, a radial structure can be used that generates reference frames connecting

obstacle [47].

Most of these algorithms lack completeness analyses, that is, there is no guarantee

that the homotopy class can be identified for every path. For example, when the strings

generated by two paths are different, it may be unknown whether the two paths are in the

same homotopy class. Importantly, many of the homotopy- and homology-based algorithms
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only support finding the shortest path [39, 44] or a feasible path [47] rather than an optimal

path with respect to general objective functions.

Sampling methods have been widely used to perform efficient path-planning. RRT* [60]

exploits sampling efficiency and guarantees that it will find the optimal path in the limit

as samples grow. An RRT* approach has also been combined with the ability to identify

completely the homotopic equivalence of two paths in 2D using a homotopic Deterministic

Finite Automata (DFA) [128]. In that work the homotopic equivalence of two arbitrary

paths could be determined using properties of strings recognized by the DFA, but the RRT*

implementation did not fully exploit this capability.

There is still a need for a complete path-planning algorithm that is capable of exploring

any topology class, including winding topologies, and that guarantees that the optimal path

within the topology class will be found. We propose a sampling-based algorithm that should

work with many different decomposition techniques [39, 119], but we demonstrate results

using the homotopic DFA method from.

9.3 Homotopy Identification

Given the information from the previous section, we can define the problem the algorithm

must solve.

Definition 1. Homotopy-based Optimal Path-Planning Let X ⊂ Rd denote a bounded

connected open set, Xobs ⊂ X an obstacle space, Xfree = X \ Xobs the obstacle-free space,

xinit an initial state , and xgoal a goal state. Define a path in X as a continuous curve

parameterized by s as σ(s) : [0, 1] → X. Denote a strictly monotonically increasing cost

of the path as Cost(σ). Let H(xinit, xgoal) denote the set of homotopy classes defined by

xinit ∈ Xfree and xgoal ∈ Xfree, let H = {h1, · · · , hN} ⊆ H denote a particular subset of

homotopy classes, and let h(σ) denote the homotopy class of σ. For each hi ∈ H the goal is to

find paths σ∗hi such that (a) ∀s ∈ [0, 1], σ∗hi(s) ∈ Xfree ; (b) σ∗hi(0) = xinit and σ∗hi(1) = xgoal;
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and (c) σ∗hi = arg minσ∈Xfree∧h(σ)=hi Cost(σ). Σ∗(H) = {σ∗hi : hi ∈ H} denotes the set of

optimal paths subject to the set of allowed homotopy classes.

Definition 1 says that, given a particular set of homotopy classes and a cost function, the

planner should find paths that minimize the cost in the given set of homotopy classes. Because

we assume that the cost function is monotonically increasing, we can have Property 1.

Property 1. ∀hi, σ∗hi has finite length.

In order to find the optimal path in a homotopy class, we need to be able to represent

and identify the homotopy class of all paths. Our homotopy identification process converts

any path into a string so that identifying homotopy equivalence is mapped into a problem of

identifying string equivalence. Strings are generated using an improved method of Jenkins’

approach [53] to detect homotopic equivalence of two paths by separating a map into disjoint

subregions [47]. A reference frame segment, which Jenkins called a reference frame, is a line

segment constructed from a center point and a point in an obstacle, extended to the map

boundaries. The collection of reference frames created from a set of obstacles partitions the

map into disjoint subregions. Figure 9.2a shows an example of a map with two obstacles and

two reference frames (blue and green dashed lines) – one for each obstacle. Strings will be

constructed based on the simple idea that if two paths cross the same sequences of reference

frames, then they belong to the same homotopy class.

9.3.1 String representation

Algorithm 1, given below, creates reference frames R from a set of points that are generated

as follows: In a map with a set of obstacle regions Xobs clustered in a finite set of obstacle

regions Bk such that Xobs = ∪kBk, an obstacle point bk is randomly sampled from each

obstacle region Bk ∈ Xobs . A center point c is then randomly sampled in the non-obstacle

region Xfree = X \Xobs subject to the constraint that it is not in any line that connects two

different bk. Connecting each bk with c creates a radial structure of reference frames that

partition the map.
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S1-1

S1-0
S2-0

S3-0

S3-1

S4-0

(a) Ref. frames

S1-1

S2-0

S3-1

S3-0

S1-0

S4-0

(b) State trans. (ST)

S1-1

S2-0

S3-1

S3-0

S1-0

S4-0

(c) Homotopic ST

Figure 9.2: Map with obstacles.

Algorithm 1 InitRefFrames (Xfree , Xobs)

1: R = ∅, b = ∅
2: for each Bk ∈ Xobs do
3: b← b ∪ {bk} randomly sampled from Bk

4: c← Randomly sampled from Xfree

5: while ∃bk, bk′ , c ∈ Line( bk, bk′ ) do
6: c← Randomly sampled from Xfree

7: for each bk ∈ b do
8: lk ← Line( bk, c )
9: {lkm} ← Intersect(lk, Xobs , c)

10: R← R ∪ {lkm}
return R
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The method Line(p1, p2) returns the line defined by p1 and p2, and the method

Intersect(r,Xobs , c) returns all segments of line r that don’t intersect with an obstacle in

Xobs or the center point c.

If we assign an ID character to each reference frame, then how a path sequentially

crosses the reference frames can be converted into a string of ID characters. For example, in

Figure 9.2a, the path that starts in subregion S4−0 and ends in subregion S1−1 sequentially

visits the reference frames α1,1, α2,2, α2,3. Concatenating these characters yields the path

string α1,1α2,2α2,3. A deterministic finite automata (DFA) formalizes the process of translating

a path into a path string; see Figure 9.2b.

Definition 2. Let M = (S,R, δ, S0, ST ) be a DFA that represents the string generation

process from a path, where S is a set of subregions, R is a set of reference frames, S0 ∈ S is

the start subregion, ST ∈ S is the end subregion, and δ : S×R→ S is the transition function

that defines how one subregion transitions to another subregion by crossing one reference

frame in R. A string v is created as follows:

• v is initialized as an empty string ε.

• The path starts at xinit ∈ S0 and ends at xgoal ∈ ST .

• When there is a transition across a reference frame r ∈ R, v ← vr.

Thus, v is the string generated by a path through the map using M . Because we restrict

attention to finite length paths σ, the strings generated by those paths have a finite number

of characters.

We now develop conditions under which a set of string blocks partition the set of

all paths into a set of disjoint homotopy classes. We present these as a series of properties,

lemmas, and theorems.

Let Σ denote the set of all (finite length) paths σ ⊂ Xfree , and let Σv denote the set of

all paths that generate string v. We call Σv a string block because it partitions Σ into blocks
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that share common string properties. Notice that the lower case σ denotes a path and the

upper case Σ denotes a set of paths; we use this convention throughout the paper.

We now present properties of paths and the strings generated by those paths via M .

Let vi denote a string of a path that is generated byM . Property 3 states that Σ is partitioned

by a set disjoint string blocks. Note that the properties apply to both simple (non-looping)

and non-simple (self-intersecting) paths. By Property 1, we can have Property 2.

Property 2. ∀hi, M(σ∗hi) is a finite-length string.

Property 2 says that we need only consider finite length strings even though there an

uncountable number of paths through Xfree . This means that the union in Property 3 is over

a countable set in applications.

Property 3. Σ =
⋃
vi

Σvi and vi 6= vj ⇒ Σvi ∩ Σvj = ∅.

We use ' to denote the homotopy of two paths, e.g. σ1 ' σ2. Property 4 states that

two paths are homotopic when they belong to the same string block Σv. In other words, if σi

and σj generate the same string v, σi and σj are homotopic.

Property 4. ∀σi, σj ∈ Σv, σi ' σj.

We extend the meaning of ' to string blocks. Thus, Σvi ' Σvj means that all the

paths in string block Σvi are homotopic to all the paths in string block Σvj . Property 5 that

' over string blocks is an equivalence relation.

Property 5. ' in Σvi ' Σvj is an equivalence relation.

Property 6 is related to Property 3 and tells us that the set of all paths in a single

homotopy class hi is partitioned into the string blocks associated with that homotopy class.

Let Vi = {M(σ) : σ ∈ hi}, and let ΣVi denote the corresponding set of paths that generate

strings in Vi.

Property 6. ∀Σhi ,∃Vi = ∪vji ,Σhi = ΣVi = ∪Σvji
.
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Figure 9.3: A hierarchy of path partitions.

The set of all the paths can be partitioned into a set of homotopy classes and each

homotopy class can be partitioned into a set of string blocks. This results in a hierarchical

decomposition of paths, as illustrated in Figure 9.3.

Because of this partition, determining whether two paths in different string blocks are

homotopic is equivalent to determining whether the two string blocks that the paths belong

to are homotopic. We now establish some properties that allow us to turn this claim into

an algorithm that determines whether two paths are homotopic by comparing the strings

produced by those paths.

Let σi ◦σj indicate the concatenation of σi and σj , and vivj indicate the concatenation

of vi and vj . Property 7 states that if two touching paths σi and σj are concatenated together

to form σi ◦ σj then M generates a string vivj that is the concatenation of the strings

generated by the two individual paths vi and vj. We have Property 7.

Property 7. If σi ∈ Σvi , σj ∈ Σvj and σi(1) = σj(0) then σi ◦ σj ∈ Σvivj .

To determine the homotopic equivalence of two paths that belong to different string

blocks, we remove an ambiguity from M . Observe that the reference frames form a radial

structure emanating from the center point c. We denote the set of all reference frames segments

between the center point c and an obstacle boundary by Rc and the set of subregions that

connect with the center point c by Sc.
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(a) Example A (b) Example B

Figure 9.4: Equivalence in Homotopy.

Property 8. A path segment that sequentially crosses several reference frames in Rc between

two different subregions in Sc is homotopic to a path segment that crosses only the center

point c.

For example, in Figure 9.4a, two paths with different strings α2,0α1,0 and α1,1α2,1

indicate two paths in the same homotopy class. By Property 8, we have Σα2,0α1,0 ' Σc '

Σα1,1α2,1 . Figure 9.4b illustrates a second example.

An important consequence of Property 8 is that paths that only go through regions

Sc are homotopic to a simple path segment that starts and ends at the same position within

Sc. Furthermore, all of these paths are homotopic to a path that generates the empty string.

This means that we can merge all the subregions in Sc into a new subregion Ŝc. We can now

create a new DFAthat removes the ambiguity associated with the center region.

Definition 3. Let Mh = (Sh,Rh, δh, Sh0 , S
h
T ) be a homotopic DFA that represents the string

generation process from a path, where Sh = (S \Sc)∪{Ŝc} is a set of subregions, Rh = R\Rc

is a set of reference frames, Sh0 ∈ Sh is the start subregion, ShT ∈ Sh is the end subregion, and

δh : Sh ×Rh → Sh is the transition function that defines how one subregion transitions to

another subregion along the path by reference frames in Rh. Strings are generated as follows:

• v is initialized as an empty string ε.

• The path starts at xinit ∈ Sh0 and ends at xgoal ∈ ShT .
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• When there is a transition across a reference frame r ∈ Rh, v ← vr.

• When there is transition Rc, v ← vε = v.

Figure 9.2c gives an example of the homotopic DFA that is created from the DFA in Figure

9.2b.

Now that we have removed this ambiguity, we observe an important relationship

between a simple path and the string that Mh generates from this path. We separate this

relationship into its own subsection to emphasize a shift from the properties of relevant

partitions to useful algorithms.

9.3.2 Non-REP Strings

A duplicate ID character in a string reveals that a path crosses a reference frame more than

once. Property 9 formalizes this.

Property 9. A duplicate ID character in a string Mh(σ) indicates that σ has visited a

subregion at least twice.

Strings with no duplicate ID character can only be generated by simple paths that

never leave a subregion by crossing a reference frame and then returning by recrossing that

same reference frame. This implies the next property.

Property 10. In every simple homotopy class there exists a path σ such that Mh(σ) has no

duplicate characters.

Consider a string constructed in the following manner: begin with the empty string

ε and recursively insert a palindromic substring wwR, where the R operator reverses the

characters in the string, into any position of a string. We denote a string made up of

recursively embedded palindromic substrings an REP structure. Note that ε and strings of

the form wwR are REP structures. A non-REP string is defined as a string that does not

contain an REP structure or substring. Removing REP substrings of a REP string produces

a non-REP string.
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(a) Before deformation ε (b) After deformation qq

Figure 9.5: Path deformation.

We now present a lemma that yields the first useful algorithm of the paper.

Lemma 1. If σ is a simple path segment that begins and ends in the same subregion and

encloses no obstacle, then Mh(σ) is a REP string.

Proof. The proof is by induction on the number of subregions visited by a path.

• Base case: If a simple path segment σ never leaves a subregion then Mh(σ) = ε.

• Induction step: Assume a simple path segment σ that begins and ends in the same

subregion, and Mh(σ) is a REP string. Deform the path segment σ into a different

simple segment σ′ by crossing only one more reference frame with ID q and then

returning to the original subregion, as illustrated in Figure 9.5. Mh(σ′) is Mh(σ)

embedded with qq, where qq = qqR is a palindromic substring. Thus, Mh(σ′) is also a

REP string.

• Conclusion: Any simple path segment σ that begins and ends in the same subregion

can be obtained by recursively applying deformation to a simple path that never leaves

a subregion in the inductive step.

A useful consequence of this lemma is the following.
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Corollary 1. All simple paths that begin and end in the same subregion and enclose no

obstacle are homotopic to each other and to a path σ such that Mh(σ) = ε.

Algorithm 2 removes REP substrings using the simple principle that if a character is

on the top of the stack when you encounter the next one, you’ve found a REP substring and

should eliminate it from the string. Algorithm 2 removes REP substrings by sequentially

Algorithm 2 REPTrim(v)

1: stack T = ∅
2: for char ∈ v do
3: if Top(T ) == char then
4: Pop(T )
5: else
6: T ← char

return T

pushing characters from the string onto a stack unless the character at the top of the stack

matches the next character in the string. If the top of the stack and the next character match,

the stack is popped to eliminate the palindromic structure.

Consider two paths in the same homotopy class, σ and σ∗. Suppose that σ∗ is

the shortest path in that homotopy class. REPTrim() converts string v = Mh(σ) into

v∗ = Mh(σ∗) yielding Property 11.

Property 11. v∗ = REPTrim(v).

The homotopic DFA converts two concatenated paths into two concatenated strings.

Because of the recursive nature of Algorithm 2, these strings decompose into shortest strings

yielding Property 12.

Property 12. REPTrim(v1v2) = REPTrim(v∗1v
∗
2)

= REPTrim(REPTrim(v1)REPTrim(v2)).

Algorithm 2 will never have two consecutive characters the same in the stack. This

implies that there are no two consecutive characters that are the same in the output v∗.

Property 13. ∀i ∈ {1, . . . , |v∗| − 1}v∗[i] 6= v∗[i+ 1].
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Having characterized several relationships between a path σ and its corresponding

string Mh(σ), we now want to identify string properties that tell us when two paths are

homotopic. Although Property 4 tells us that two paths are homotopic when they are in the

same string block, we need more. Specifically, we also need to know when two paths from

different string blocks are homotopic.

9.3.3 Homotopic Equivalence

We now show that we can use a non-REP string v∗ to determine whether Mh(σ1) and Mh(σ2)

belong to the set of strings Vi generated by paths in the same partition. Lemma 2 shows

that every path is homotopic to a path that generates a non-REP string.

Lemma 2. ∀v,∃v∗,Σv ' Σv∗

Proof. Every path in a homotopy class is homotopic to the shortest path in that same

homotopy class. By Property 10, the shortest path generates a non-REP string v∗, which

means Σv ' Σv∗ .

Non-REP string v∗ can be used to determine whether two paths are homotopic. This

requires two lemmas. Lemma 3 applies when we have two identical shortest strings.

Lemma 3. REPTrim(v∗i v
∗
j
R) = ε⇔ v∗i = v∗j .

Proof. Suppose REPTrim(v∗i v
∗
j
R) = ε. When v∗i v

∗
j
R is input to REPTrim(), v∗i is pushed

onto the stack first. The “no duplicate character” property of shortest strings, Property 13,

means that the entire string v∗i will be on the stack. Thus, the length of the stack is |v∗i |. In

order to get an empty string ε as the output, the stack needs to be cleared. This requires

that |v∗i | = |v∗j R| and v∗i
R = v∗j

R, which implies that v∗i = v∗j .

Conversely, when v∗i = v∗j , simulating stack pushes/pops shows that REPTrim(v∗i v
∗
j
R) =

REPTrim(v∗i v
∗
i
R) = ε.

Lemma 3 is a lemma about strings, and Lemma 4 is a corresponding lemma about

paths.
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Lemma 4. σ1 ' σ2 ⇔ REPTrim(Mh(σ1 ◦ σR2 )) = ε.

Proof. Suppose σ1 ' σ2. Concatenating σ1 with a reversed σ2 creates the path σ1 ◦σR2 , which

encloses no obstacle by the definition of homotopy. σ1 ◦ σR2 is homotopic to the (closed) path

that starts and ends at the same position, σ1(0). Since this closed path encloses no obstacle,

σ1 ' σ2 ⇒ σ1 ◦ σR2 ' σ1(0). This means that the closed path σ1 ◦ σR2 recursively visits several

subregions and backtracks, returning to the starting point. Applying REPTrim() to the string

generated by such a path yields the empty string. Thus, we have REPTrim(Mh(σ1 ◦σR2 )) = ε.

Conversely, suppose REPTrim(Mh(σ1 ◦ σR2 )) = ε. We use a proof by contradiction.

Assume that σ1 6' σ2. By Property 12, REPTrim(Mh(σ1 ◦ σR2 )) = REPTrim(v∗1v
∗
2
R). By

Lemma 3, we have v∗1 = v∗2. Because σ1 6' σ2, let σ1 ∈ Σ1 and σ2 ∈ Σ2, we have Σ1 6' Σ2. Let

min len(Σi) = arg minσ∈Σi
|σ| be the shortest path in Σi. We have min len(Σ1) 6' min len(Σ2).

However, by the definition of non-REP string, Mh(min len(Σ1)) = Mh(min len(Σ2)) =

v∗1 = v∗2. Property 4 implies that min len(Σ1) ' min len(Σ2). This is a contradiction, so

σ1 ' σ2.

By Lemma 4 and Lemma 3, we can derive Theorem 1.

Theorem 1. REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)) iff σ1 ' σ2.

Proof. Let v∗1 = REPTrim(Mh(σ1)) and v∗2 = REPTrim(Mh(σ2)).

When REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)), we have v∗1 = v∗2. By Lemma 3, we

know REPTrim(v∗1v
∗
2
R) = ε. Thus, REPTrim(Mh(σ1)Mh(σ2)

R
) = ε. By Lemma 4, we have

σ1 ' σ2.

When σ1 ' σ2, we can create a path σ1σ2
R by concatenating σ1 and a reversed σ2.

Without loss of generality, we can assume that this path starts and ends at the same position.

By Lemma 4 and Property 12, we have ε = REPTrim(Mh(σ1σ2
R)) = REPTrim(v∗i v

∗
j
R). By

Lemma 3, we know v∗i = v∗j , which implies REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)).

Theorem 1 tells us that we can identify the homotopy of two paths by comparing the

strings generated by the homotopic DFA after passing them through Algorithm 2. We now
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use this property to create RRT*-based planners that only generate solutions constrained to

one or more homotopy classes.

We first present HARRT* in Section 9.4, which efficiently explores multiple string

blocks. Although HARRT* does not allow optimal paths to be found subject to a homotopy

class given a single string block, it is still useful from a human-robot interaction stand point

because it enables an optimal path to be found if and when the human specifies a desired

string block. If a human wanted to specify an entire homotopy class, we introduce TARRT*

in Section 9.5.1, which enforces the sequences of subregions exploration for required string

blocks subject to a technical condition on the length of the optimal path.

9.4 HARRT*: Bidirectional Homotopy-Aware Sampling

Before discussing the HARRT* algorithm, we give a brief discussion of how homotopy

constraints can be generated. In the most simple case, suppose that we are given a desired

homotopy class as an example path σex . The REPTrim algorithm can then be used to

generate the corresponding representative string v∗ = REPTrim(Mh(σex )) for the homotopy

class. Strings from other paths can then be compared to this string to see if the two strings

match; the paths are in the same homotopy class if and only if the strings agree. In the

more general case, multiple paths can represent multiple homotopy constraints, and a set

of representative strings can be formed and used to determine if a path satisfies any of

the homotopy constraints. HARRT* extends RRT* to include the string comparisons that

eliminate branches of the tree that are not consistent with a desired homotopy class. More

precisely, HARRT* takes as input a string block, presumably specified by a human, and finds

optimal paths within this string block (subject to a technical condition explained shortly).

Recall that a string block is a subclass of a homotopic class, so finding an optimal path

subject to a string block is an important contribution to homotopy-based path-planning.

RRT* explores a map to generate an optimal tree structure based on the cost distribu-

tion on the map. While the tree structure explores the planning space, the DFA Mh can be
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used to generate the strings of the branches. Branches of the tree terminate if they generate

a string that differ from string block constraint specified by the human. The string of each

branch indicates the homotopic subclass of the corresponding subpath given by the string

block. The resulting algorithm, Algorithm 3, is called Homotopy-aware RRT* (HARRT*).

Algorithm 3 HARRT* (xinit, xgoal)

1: i← 0
2: Ns ← {xinit}; Es ← ∅; Ts ← (Ns, Es)
3: Ng ← {xgoal}; Eg ← ∅; Tg ← (Ng, Eg)
4: while i < N do
5: Ts, x

new
s ← Explore(Ts, i)

6: Tg, x
new
g ← Explore(Tg, i)

7: ps ← Connect(xnews , Tg)
8: pg ← Connect(xnewg , Ts)
9: P ← UpdateBestPathByClass(ps, P )

10: P ← UpdateBestPathByClass(pg, P )
11: i← i+ 1

12: P ← MergePaths(P ) return P

The algorithm uses a bi-directional structure. There is a start tree Ts = (Ns, Es),

which is an RRT* structure from the start position for the optimal cost-to-arrive. Ns is

the set of vertices in Ts, and Es is the set of edges in Ts. Similarly, there is a goal tree

Tg = (Ng, Eg), which is an RRT* structure from the goal position for the optimal cost-to-go.

In each iteration, a new vertex is created and added to each tree using Explore().

Connect() is then called to create a path with a vertex in the other tree. In order to

guarantee optimality, a set of near vertices in Tg is provided to find the best vertex to

be connected with the new vertex xnews in Ts, and vice versa. The created path will be

compared with the current best path that belongs to the same string block. If it is a

better one, the best path in this string block will be updated, which is implemented in

UpdateBestPathByClass().

Algorithm 4 gives the exploration process of a tree structure and is similar with that

used in RRT* [59]. The first difference is that the string associated with each branch is updated

(implementing Mh on that branch). The second difference is that the StringCheck()
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Algorithm 4 Explore(T, i)

1: xrand ← Sample(i) ;
2: xnearest ← Nearest(T, xrand)
3: xnew ← Steer(xnearest, xrand, η)
4: if ObstacleFree(xnearest, xnew) then
5: s← STR(xnearest) ◦ CRF((xnearest, xnew))
6: if StringCheck(s) then
7: xmin ← xnearest
8: Xnear ← Near(T, xnew, |N |)
9: for each xnear ∈ Xnear do

10: if ObstacleFree(xnew, xnear) then
11: s← STR(xnear) ◦ CRF((xnear, xnew))
12: if StringCheck(s) then
13: if Cost(xnear) +c( Line(xnear, xnew) ) < Cost(xnew) then
14: xmin ← xnear
15: E ′ ← E ′ ∪ {(xmin, xnew)}
16: for each xnear ∈ Xnear \ {xmin} do
17: if ObstacleFree(xnew, xnear) then
18: s← STR(xnew) ◦ CRF((xnew, xnear))
19: if StringCheck(s) then
20: if Cost(xnear) > Cost(xnew) + c(Line(xnew, xnear)) then
21: xparent ← Parent(xnear)
22: E ′ ← E ′ \ {(xparent, xnear)}
23: E ′ ← E ′ ∪ {(xnew, xnear)}

return T, xnew
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method is used to check whether the string of a branch satisfies the string constraint specified

by the given string block constraint. Strings that satsify the string constraint correspond

to a branch of the tree that is in an allowed string block. The methods in Algorithm 4 are

defined as follows:

• CRF(l): Return the ID characters that represent the crossed reference frames of a line

segment l if any.

• STR(x): Return the string that represents the crossed reference frames of the subpath

from the root to the node x sequentially. This implements Mh.

Because RRT* maintains a tree structure, each vertex has only one path to arrive from

the root. This path can be converted into a string of ID characters by Mh. StringCheck()

guarantees that a new node is added or rewired so that all the branches of the tree structure

are in the set of representative strings that correspond to the set of permissible string blocks.

We are emphasizing that HARRT* checks to see if the path is within a string block rather than

checking if the path is in a permissible homotopy class (recall from the hierarchy that there

can be multiple string blocks in each homotopy class). The TARRT* algorithm discussed

later enforces a more precise version of this homotopic, allowing for exploration of branches

that might have REP substrings.

For example, suppose we have a string constraint “ab”. A branch of the start tree Ts

with string “a” satisfies the constraint, because “a” can be extended into “ab” by concatenating

a “b”. However, a branch beginning with string “b” cannot be extended into “ab”, and

therefore does not satisfy the string constraint. It is similar for the goal tree Tg but with

reversed string order. Note that this is an early check of the homotopy class constraint and

may eliminate some paths that would explore areas outside of the current subregion; we will

say more about this in the results section.

The methods in Algorithm 5 are defined as follows:

• Path(v, T ): Return the path from the root of the tree T to the vertex v.
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Algorithm 5 Connect(xnew, T )

1: pmin = ∅
2: Xnear ← NEAR(T, xnew, |N |)
3: for each xnear ∈ Xnear do
4: if ObstacleFree(xnew, xnear) then
5: if xnew ∈ Ts then
6: p← Concatenate(xnew, xnear)
7: else
8: p← Concatenate(xnear, xnew)

9: if StringCheck(p) and Cost(p) < Cost(pmin) then
10: pmin = p

return pmin

• Concatenate(pa, pb): Return a concatenated path of pa and pb. If pa and pb are from

different directions, one of them will be reversed for the concatenation.

When the exploration process is finished, the algorithm returns a set of the best paths

corresponding to legal paths for the different permissible string blocks. Once the algorithm

completes, it is possible to use the REPTrim algorithm to cluster paths from different string

blocks into the same homotopy class. This means that a human can specify one or more

string blocks within one or more given homotopy classes that might be of interest to the

human, and then let the algorithm find the best path for each homotopy class generated

by exploring the relevant string blocks. We assume that this is the human’s intent, so the

MergePaths() method clusters the equivalent string blocks into their relevant homotopy

classes, and the set of paths P is updated.

9.4.1 Theoretical Analysis

In the Connect() procedure, a vertex n in either Ts or Tg is used to create a path by

connecting with a vertex in the other tree. The resulting path connects a subpath from the

start to n to a subpath from n to the goal, which corresponds to finding a path from the

start to the goal with a constraint of via n.

Property 14 states the convergence properties of the algorithm. It implicitly relies on

Assumptions 1–3 from Karaman’s RRT* paper.
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Property 14. Given Assumptions 1-3 from Karaman’s RRT* paper [59], The cost of the

path from the root to any vertex in the tree produced by RRT∗ almost surely converges to the

optimal cost from root to vertex within a permissible string block.

The start tree and the goal tree asymptotically converge to the optimal structures,

which provide the optimal-to-come subpath and optimal-to-go subpath connected by a

via-point. Concatenating the optimal subpaths derives the optimal path of the via-point

constraint.

Lemma 5. Given Assumptions 1-3 from Karaman’s RRT* paper [59], the path created by

concatenating a path from Ts via n to a path from Tg almost surely converges to the optimal

path subject to the the constraint that the path stays within a permissible string block.

There are two big limitations of the HARRT* algorithm. First, the algorithm only

explores paths that are consistent with a given string block rather than all paths that

are within a given homoptopy constraint. (Recall from the hierarchical decomposition of

paths and strings that the strings associated with a given homotopy constraint can include

multiple string blocks.) Second, not all interesting and useful paths in a string block can

be achieved using the via-point method of connecting start and goal trees in HARRT*. For

example, twisted or winding topologies may not be achievable using via-point connections.

Consequently, HARRT* does not provide completeness in exploring all possible homotopy

classes though it does enable useful exploration of string blocks that can later be clustered

into relevant homotopy classes.

We now present the TARRT* algorithm, which uses a sequence-guided homotopy-aware

sampling approach, that can explore all possible homotopy classes.

9.5 TARRT*: Sequence-Guided Homotopy-Aware Sampling

In this section, we present the TARRT* algorithm, a topology-aware random sampling

algorithm that is derived from the standard RRT* algorithm [60]. Assumptions from [60]
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about RRT* are inherited here. Since we are interested in path-planning subject to topological

constraints, we restrict attention to paths that (a) start at a specified initial position and end

at a specified goal position and (b) satisfy a topological constraint specified as a given set of

homotopy classes. As an example of a topological constraint, suppose that the topological

constraint is specified when a human draws a path on a map and specifies that the robot

must find the optimal path from the homotopy class of the drawn path; then Σ is a single

homotopy class. Similarly, if a human says to avoid a particular region, then this topological

constraint corresponds to a set of different homotopy classes that avoid that region. Note that

unlike HARRT*, which restricts exploration to string blocks, TARRT* can explore entire

homotopy classes. We are interested in both non-simple paths and non-simple homotopy

classes.

We had previously restricted attention to paths that were finite length, but we now

need to place a stronger restriction on the types of paths that the algorithm will explore.

Assumption 1. ∀σ∗ = arg minσ∈Σ Cost(σ),∃τ ≥ 1, |v| ≤ τ |v∗| and σ∗ ∈ Σv.

In this assumption, the topological constraint is represented by the set Σ that contains

all homotopy classes consistent with this constraint. Assumption 1 says that if you give me

an optimal path σ∗ that produces string v∗ then we can restrict search to paths σ and their

corresponding strings v such that (a) the optimal path belongs to homotopy class induced by

v and (b) the length of the strings is constrained to be less than a “stretching” factor times

the length of of v∗. Stated simply, we assume that we can restrict search to paths that are

in a homotopy class consistent with some optimal path and that don’t produce really long

strings. The value of τ determines how many string blocks need to be explored to find the

optimal path in a homotopy classes. For example, when τ = 1, only the shortest string block

is needed to explore for finding the optimal path of a homotopy class.

This restriction addresses one of the limitations of the HARRT* algorithm by (a) al-

lowing the algorithm to explore paths that may be consistent within the homotopy class once
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the REPTrim algorithm is applied rather than (b) restricting exploration to only one string

block with a homotopy class.

9.5.1 Expanding Topology

The basic idea of the Topology Aware RRT* (TARRT*) algorithm is that the tree produced

by RRT* is “chunked” into subtrees when the paths in those subtrees produce different string

blocks; extension of the trees is restricted to only those string blocks that are consistent

with the desired topological constraint(s). The RRT* subtrees find the optimal path within

each string block, and the optimal path for the homotopy class is the best of the paths for

the string blocks. The algorithm can be naturally extended when the topological constraint

consists of several homotopy classes but with a corresponding increase in the number of string

blocks to explore.

We will be talking about two different trees as we discuss the algorithm: the tree

produced by RRT* and the tree of subtrees produced when we group the RRT* branches

into string blocks. To help distinguish between the elements of the tree of subtrees and the

elements of the tree, we will refer to the subtrees that belong to the same string block as a

TARRT* node and the individual elements of the complete tree as RRT* vertices.

Figure 9.6a illustrates a very simple world with four regions. These four regions are

separated by four reference frames, “A1,B1,A2,B2”, and the homtopic DFA adds the label

for these references frames to the string whenever the path crosses the reference frame. The

small red square indicates the start position and the small blue square indicates the goal

position; for this world, the path must start in subregion “R1” and end in subregion “R4”.

Figure 9.6b illustrates some of the sequences of regions that could be visited on a path from

the red square in “R1” to the blue square in “R4”. Thus, they represent different string

blocks and different sequences of TARRT* nodes that can be created, since each visit to a

new region causes a new character to be added to the string. The parameter τ represents the

“budget” given to the algorithm to explore different possible string blocks. In the figure, τ is
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Figure 9.6: Expanding Toplogy.

large enough to allow strings up to four characters long, corresponding to paths that visit up

to five TARRT* nodes.

Each TARRT* node is associated with a subregion, and each edge in TARRT* is

associated with a reference frame. There exist similarities between string blocks. For example,

all the string blocks start in the same initial subregion “R1”. The string block “B1,A2,B2,B2”

contains a substructure that is identical with the string block “B1,A2”. We can thus use

an expanding topology to efficiently express these string blocks, as shown in Figure 9.6c.

The root TARRT* node is always associated with the start subregion. Denote a TARRT*

node associated with the goal subregion as a terminal TARRT* node. Any path from the

root expanding node to a terminal TARRT* node defines a string block, which is called a

string-block branch of the TARRT* tree. In Figure 9.6c, each path from the TARRT* node

“R1” to an TARRT* node “R4” is within one of the string blocks in Figure 9.6b.

RRT* uses directed random sampling to create new possible nodes in the RRT*

subtrees. Since each one of the new possible RRT* vertices is located in a subregion, it is
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possible that the location of the new node can be part of multiple string blocks and their

corresponding TARRT* nodes. If we can generate an optimal structure like RRT* but sorted

by string blocks, backtracking from a goal position in a terminal expanding node to the root

obtains the optimal path of the corresponding string block.

9.5.2 Topology-Aware Space Sampling

The TARRT* algorithm is given as Algorithm 6. It inherits optimal spatial sampling from

RRT* but the tree generation process is guided by an expanding topology of TARRT* nodes.

The branches of the tree are sorted by string-block branches of the expanding topology, like

in Figure 9.6d. The algorithm enforces a “tree of subtrees” structure by ensuring that the

parent RRT* vertex of any RRT* vertex can only be located (a) within the same TARRT*

node as the RRT* vertex or (b) in the parent node of that TARRT* node. Moreover, if an

existing RRT* vertex is linked with a new RRT* vertex, the edge between those vertices

must visit reference frames as defined in the expanding topology of TARRT* nodes.

For example, consider the string block “B1, A2” at the top of Figure 9.6b and an

RRT* vertex in the TARRT* node “R4”. If the RRT* vertex has a parent in TARRT* node

“R2”, the edge between child and parent should cross the reference frame “A2”. If the RRT*

vertex has an edge connecting to a grandparent RRT* vertex in TARRT* node “R1”, the

edge should cross the reference frames “B1”,“A2” sequentially. If an RRT* vertex has an

edge towards a node in the TARRT* node “R3”, the edge violates the requirement of this

string block and should not exist.

Because a subregion is associated with multiple TARRT* nodes in an expanding

topology, when a new position is sampled as dictated by the directed sampling in RRT*, a

new RRT* vertex will be created in each TARRT* node that is associated with the subregion

that the new position is in. This means that when a new position is sampled, there are new

RRT* vertices created in several associated TARRT* nodes. For example, a new position

(the yellow square) is sampled in the subregion “R3” of a map, as illustrated in Figure 9.7a.
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Algorithm 6 Topology-Aware Rapidly-exploring Random Tree* G(V,E)

1: V ← {xinit}; E ← ∅; i← 0
2: while i < N do
3: xrand ← Sample (i) ; i← i+ 1
4: xnrst ← Nearest (G, xrand)
5: xnew ← Steer (xnrst, xrand, η)
6: if ObstacleFree(xnrst, xnew) then
7: S = Subregion ( xnew )
8: for each tarrt node in TarrtNodes ( S ) do
9: tarrt node← xnew

10: G← Extend (G, xnew, xnrst)

R1 R2

R3 R4

A1 A2

B1

B2

(a) Sampling (b) Create new nodes

Figure 9.7: Sampling and adding new nodes.

Two new RRT* vertices of the position are added to the two TARRT* nodes, one for the

top string block topology and another for the bottom string block topology as shown in

Figure 9.7b.

We now define several functions, using appropriately modified definitions from the

RRT* algorithm in [60].

• Sample(): Returns independent uniformly distributed samples from Xfree.

• Nearest(): Returns a position of the vertex whose position is closest to point x.

Nearest(G = (V,E), x) = arg minv∈V ‖x− v‖.

• Steer(): Given two points x and y, returns a point z on the line segment from x to y

that that is no greater than η from y. Steer( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z − y‖.

• ObstacleFree(x, x′): Returns True if [x, x′] ⊂ Xfree , which is the line segment between

x and x′ lies in Xfree .
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• Subegion(x): Returns the subregion that position x is in.

• TarrtNodes(S): Returns all TARRT* nodes from the expanding topology that are

associated with subregion S.

The RRT* vertices of the TARRT* tree are created and stored in TARRT* nodes.

This provides information for how to add connections between new positions to potential

parent RRT* vertices and also how to rewire RRT* vertices so that rewiring honors string

block constraints. Thus, the Extend procedure of TARRT*, see Algorithm 7, is slightly

different from the corresponding method of RRT*.

Algorithm 7 Extend(G, xnew, xnearest)

1: if xnew = xnrst then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnrst
4: Xnear ← Near(G, xnew, |v|)
5: for each xnear ∈ Xnear do
6: if ObstacleFree(xnew, xnear) and HomotopyEligible(xnew, xnear) then
7: c′k ← Costk(xnear) +ck( Line(xnear, xnew) )
8: if c′k < Costk(xnew) then
9: xmin ← xnear

10: E ′ ← E ′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if ObstacleFree(xnear, xnew) and HomotopyEligible(xnear, xnew) then
13: c′k ← Costk(xnew) +ck( Line(xnew, xnear) )
14: if c′k < Costk(xnear) then
15: xparent ← Parent(xnear)
16: E ′ ← E ′ \ {(xparent, xnear)}
17: E ′ ← E ′ ∪ {(xnew, xnear)}

return G′ = (V ′, E ′)

The precise definitions of the methods used in the Algorithm 7 are given below.

• Near(G, x, card): Returns all vertices within the closed ball of radius

γ = min{γRRT∗(log(card)/card)1/d, η}

centered at x, in which γ > (2(1 + 1/d))1/d(µ(Xfree)
ζd

)1/d [60].
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Figure 9.8: Radius and near nodes.

• HomotopyEligible(xfrom , xto): Return true if the sequence of reference frames a line

visits is consistent with a required sequence of reference framse. The line is from xfrom

to xto. The required sequence of reference frames is obtained by the sequence of edges

from the TARRT* node that xfrom is in to the TARRT* node that xto is in.

• Line(x, x′) : [0, s]← Xfree denotes the path defined by line segment from x to x′.

• Cost(x): Returns cost of the unique path (because G is a tree) from xinit to the vertex

x ∈ V . Cost(xinit) = 0.

The definition of HomotopyEligible() in Algorithm 7 differentiates TARRT* from

conventional RRT*. It indicates n path constraint, in which the edge between the RRT*

vertex and a possible RRT* vertex must not intersect a reference frame or they must intersect

a reference frame in such a way that the path through the tree stays within the string block.

Recall that there are multiple string blocks permitted by the homotopy constraint, so the

entire homotopy constraint is explored (in constrast to HARRT*), though subject to the

path length assumption made above.

For example, given a radius for the sampled position shown in yellow in Figure 9.8a,

different string-block branches return different sets of possible RRT* vertex neighbors. In

Figure 9.8b, they are shown with different colored borders. Figure 9.8b also illustrates the

eligible nodes returned from HomotopyEligible() in solid borders in the process of wiring

the new node to the tree. The illegible nodes are in dotted borders. The resulting tree
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structure of TARRT* allows us to trace the path from goal to starting location while staying

within a specified string block.

9.5.3 Acceptable String Blocks

Section 9.5 only uses two results directly from Section 9.3: the process for partitioning the

world and the homotopic DFA. The removal of REP strings did not directly contribute to

the TARRT* algorithm, but the properties of the REPTrim algorithm are very useful in

improving TARRT efficiency.

Consider that the set of possible paths through different subregions of the world

is infinite. We use the stretch parameter τ to constrain the length of the strings and,

consequently, the set of string blocks that we can explore. For large values of τ , there are

still a huge number of possible string blocks.

Fortunately, we can prune many of the potential string blocks by generating the string

v for each potential string block less than the bound τ |v∗| by a combinatorial a priori search

through the regions. We then pass the resulting string v into the REPTrim algorithm.

Let REPTrim(v, τ) denote the resulting set of possible string blocks. Similarly, for each

homotopic class in the topological constraint Σ, we find the minimum string for any path in

the homotopy class using REPTrim. Let REPTrim(Σ) denote the resulting set of minimum

length strings that satisfy the topological constraint. Only string blocks in REPTrim(v, τ)

∩ REPTrim(Σ) need to be considered in TARRT*.

9.5.4 Theoretical Analysis

We define a simple string-block branch as a branch in the expanding topology that contains

no duplicate subregion and use this definition to prove optimality of paths in a simple

string-block branch.

Lemma 6. The subtree of a simple string-block branch is asymptotically optimal subject to

the path-stretching constraint.
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Proof. By Theorem 38 in [60], when the radius γ is larger than a threshold

(2(1 + 1/d))1/d(
µ(Xfree)

ζd
)1/d,

RRT* structure is asymptotically optimal. A simple string-block branch implies that the

sampling space is only a subset of the Xfree. The function HomotopyEligible() trims all of

the edges that lead to different string-block branches. So the subtree of a simple string-block

branch is asymptotically optimal.

We can then use the optimality of paths in simple string-block branches to prove

asymptotic optimality for all string-block branches in TARRT*.

Theorem 2. The solution of a string-block branch in TARRT* converges to the optimal path

of a corresponding string block almost surely subject to the path-stretching constraint.

Proof. Any string-block branch, including a winding one, can be represented as a concatena-

tion of several simple string-block branches. Decompose a string-block branch into several

sections, each of which is a simple string. Let Ri be the last TARRT* node of section vj .

There are a set of RRT* vertices that are connected with RRT* vertices in successor TARRT*

nodes. The successor TARRT* nodes are all in the successor section vj+1. Any member of

the RRT* vertex set is a root to a tree, which extends into section vj+1, which is equivalent

to a simple string-block branch. By these vertices, subtrees of two sections can be connected.

By Lemma 6, such a tree is asymptotically optimal. The tree of the string-block

branch can be assembled by connecting from the subtree of the last section to the subtree of

the first section. Because the subtree of each section is asymptotically optimal, the tree of the

string-block branch is asymptotically optimal. Thus the solution converges to the optimal

almost surely.

By Theorem 1, we establish the optimal path of a homotopy class by TARRT*. A

homotopy class can contain an infinite number of string blocks by Property 3. It is impossible
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to enumerate all the possible string blocks of one homotopy class in order to find the optimal

path of the class. The optimal path of a homotopy class may belong to the corresponding

shortest string block, but sometimes visiting extra subregions and then returning back to the

parent subregion can lead to a path that has lower cost. Under Assumption 1, TARRT* can

explore a reasonable number of string blocks for a homotopy class. We have Corollary 2.

Corollary 2. With a τ that satisfies Assumption 1, TARRT* can find the optimal path of a

homotopy class almost surely.

Proof. Under Assumption 1, there is a finite number of string blocks to explore in a homotopy

class, which will contains the optimal path of the homotopy class under that assumption. The

lengths of these string blocks are all less than or equal to τ |v∗|, in which v∗ is the shortest

string of the string blocks in the homotopy class. By Theorem 2, we know that the optimal

path found for each string block converges to optimal almost surely. Thus the set of optimal

paths found (one for each member of the set of string blocks) converges to optimal almost

surely. This means that the optimal path for each homotopy class will be found almost

surely.

9.6 Experiments

This section presents a series of illustrative examples that illustrate how HARRT* and

TARRT* work. These examples provide empirical support and for the claims in the paper;

they also illustrate some useful properties of the algorithms. Both HARRT* and TARRT*

depend on a homotopic DFA. The differences are compared in Table 9.1. Comparing

the asymptotical optimality of HARRT* and TARRT* reveals how TARRT* supports

completeness in homotopy classes and how it works in winding homotopy classes.
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Table 9.1: Comparison of HARRT* and TARRT*

Algorithm Type Path space coverage Homotopy-class
exploration

HARRT* Bidirectional RRT* String blocks incomplete
TARRT* Block-sequence RRT* Simple and non-simple paths complete

(a) 400 Iterations (b) 1500 Iterations

(c) 3000 Iterations

0 1000 2000 3000
Iteration

515

520

525

530

535

C
os

t

HARRT*

(d) Convergence

Figure 9.9: Optimal search of HARRT*

9.6.1 Optimality

Figure 9.9 illustrates an optimal search of HARRT* for a string block where the path is

required to go above the second left obstacle at the top of the world and then below the third

left obstacle at the top. Black blobs indicate obstacles. The orange line is a found path from

the start (red point) to the goal (blue point). The olive lines visualize the start tree structure

and the dark turquoise lines visualize the goal tree structure generated by HARRT*. The

objective is chosen as minimizing the path length.
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(a) 400 Iterations (b) 1500 Iterations

(c) 3000 Iterations
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Figure 9.10: Optimal search of TARRT*

Figure 9.9a to 9.9b show how the bidirectional tree extends and how the best path of

the homotopy class is refined. Figure 9.9d shows the convergence of found best path in the

homotopy class. You can see the string block restriction in the figures by noting how the

exploration trees do not cross an approximately horizontal boundary near the center of the

figure. This approximately horizontal boundary corresponds to a reference frame used by the

homotopic DFA, and crossing that boundary would cause the string produced by the path to

violate the string block constraint.

Figure 9.10 shows the results of applying the TARRT* algorithm on the same test

case. It also converges to the same optimal path but in a slower convergence rate, because

the bidirectional exploration of HARRT* speeds up the process.
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Figure 9.11: HARRT*.

9.6.2 Completeness

Completeness of a topology-based path-planning algorithm is defined to mean that the

optimal path can be found for any homotopy class, given the stretching constraint imposed by

Assumption 1. The world in Figure 9.11 was created to explore different types of “slalom”-like

homotopy constraints through the world. We considered six of the possible homotopy classes

and used minimum distance as the objective. The HARRT* algorithm uses a bidirectional

structure to explore homotopy classes and it cannot find a successful path for all slalom-like

homotopy constraints. Figure 9.11 shows six worlds in which HARRT* succeeded, but note

that the algorithm failed in the bottom two constraints shown in Figure 9.12. The reason

that HARRT* fails in those two cases is not because it restricts search to a string block; it is

easy to specify a string block that slaloms in and out of the obstacles. Rather, it fails because

the via-point constraint between the start tree and the goal tree is not satisfied.

By contrast, TARRT* uses a direct exploration of the homotopy class, which means

that TARRT* can explore any homotopy class that allows finite length paths. Figure 9.12

shows that eight homotopy classes are explored in the same map with that in Figure 9.11.

The two homotopy classes where HARRT* fails but TARRT* succeeds are framed in red for

emphasis.

207



www.manaraa.com

Figure 9.12: TARRT*.

9.6.3 Narrow Passage

A case of narrow passage is shown in Figure 9.13, where the path is required to pass through

the narrow area in the map. We collect the results of running HARRT* and TARRT* 20

times respectively.

Figures 9.14a and 9.14b show the how well performance improves over time using

shaded plots in HARRT* and TARRT*, respectively. The solid lines indicate the mean

path cost over the 20 iterations and the shaded boundaries indicate one standard deviation.

Notice how HARRT* converges more quickly. The explanation is simple: since HARRT*

uses a bidirectional structure, it focuses sampling effort more efficiently than TARRT*. The

efficiency of TARRT* can be improved by importing a bidirectional structure.

Figure 9.14c reemphasizes the efficiency of HARRT* by showing in a box plot of first

iteration that a feasible path is found. Again, because HARRT* focuses sampling effort

within a string block, it finds feasible paths more quickly. Figure 9.14d plots the error bar of

the costs along the iterations. Again we see that it takes fewer iterations for HARRT* to
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(a) HARRT* (b) TARRT*

Figure 9.13: Narrow passage.

find a path than TARRT*. We can also see that the solutions of HARRT* converge to an

optimal solution faster than those of TARRT*.

9.6.4 Winding Topology

We also provide a test case of a winding topology, in which the path is expected to go

around an “x”-shape building clockwise and then pass along the right side of the bottom-right

building. Figure 9.15a shows how the topology is defined, and Figure 9.15b shows the best

path of the homotopy class that is found. In this case, the objective is to maximize the

distance from the obstacles and the world boundary. The costmap is visualized in Figure

9.15b, in which lighter shades represent higher costs and darker shades lower costs.

Because TARRT* has includes random sampling, we collected data from running

TARRT* 20 times. Figure 9.15c shows the shaded error plot of the cost convergence and

Figure 9.15d shows how fast TARRT* can find a feasible path subject to the defined homotopy

class. Note that HARRT* is unable to solve this problem, because it cannot support a winding

topology.
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Figure 9.14: Performance comparison in narrow passage.
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Figure 9.15: Winding Topology.
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(a) Turtlebot (b) Planned path (c) Navigation

Figure 9.16: Robot navigation.

9.6.5 Physical Robot Demo

We implemented interactive topological path-planning system for a physical Turtlebot robot.

Topological preference is obtained via a simple graphical user interface, which defines a

topological constraint. Either of the topological path-planners, HARRT* or TARRT*, can

be used to find an optimal path (Figure 9.16b shows the results from TARRT*) subject

to the topological constraint. The resulting path is transferred to a sequence of waypoints.

The Turtlebot then navigates by following the planned path by visual servoing, as shown in

Figure 9.16c.

9.6.6 Single versus Multiple Homotopy Classes

Consider a path-planning problem where a human supervisor can express topological con-

straints in the following ways.

1. Quickly go from point A to point B through a sequence of specific regions. Topologically,

such a path is constrained to one homotopy class, so this homotopy class becomes

the constraint of the optimization problem and “quickly” becomes the objective to

optimize [49].

2. Quickly go from point A to point B making sure to visit some regions and avoid other

regions. Topologically, such a path is constrained to be among the set of homotopy classes

that include the desired regions and avoid the undesired regions. The corresponding
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(a) Example A (b) Example B

Figure 9.17: Optimal paths with hard constraints.

homotopic constraint restricts the optimal path to the set of homotopy classes that

satisfy the requirements.

Note that we use the word “quickly” to represent the optimization criterion; in practice,

many possible criteria exist. In the results in this section, we use the Euclidean distance as

the objective to minimize because optimality can easily be verified. The objective can be

replaced with any other type in applications.

Single Homotopy Class

This subsection considers the first way of expressing intent: Quickly go from point A to point

B through a sequence of specific regions. In this case, the algorithm simply seeks to find the

path that minimizes the Euclidean distance between two points subject to the path belonging

to a single homotopy class.

HARRT* can often be efficient for the simple examples in this section because HARRT*

performs an “early check” using the string block that avoids exploring a lot of the state

space. This results in search efficiency and often produces acceptable paths, but as shown in

a previous section it possible to construct examples where this early check would prevent the

discovery of the optimal path. Future work should explore variations of the StringCheck()

method that allow a budgeted amount of deviation from a path that generates a non-repeating
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string. For example, the algorithm could leave the current string block by crossing a reference

frame but do not cross another reference frame. Effectually, this example means that the

algorithm could allow a two character palindrome to be part of the string, allowing exploration

of paths that leave a subregion to avoid an area of high cost and then return to the subregion

once they have circumvented the high cost area. Certainly, this future work would need to

explore tradeoffs in the deviation budget, the spacing of sample points that generate the

radial structure, and the structure of the cost function, but the future work might be able to

find an “in between ground” that approaches the results of TARRT* without using as much

time since it wouldn’t sample from as large a set of string blocks.

Multiple Homotopy Classes

This section considers the second way of expressing intent: Quickly go from point A to point

B making sure to visit some regions and avoid other regions. In this case, the set of regions

to visit and regions to avoid create a set of possible homotopy classes.

This section gives an example of the kinds of possible solutions that can be generated

when multiple homotopy classes are explored simultaneously. Figure 9.18, which will be

referenced again in the next section, shows the optimal solutions returned by HARRT* for

six different homotopy classes. For this second type of human intent expression, the path

with the lowest cost would be returned.

It is perhaps unintuitive why we used HARRT* to solve this multi-class problem when

TARRT* seems more appropriate. Recall that the cost function in this example is Euclidean

distance. When the cost function is Euclidean distance it is easy to specify the string blocks

within the homotopy classes that will contain the optimal solutions. For more complex cost

functions, TARRT* would often be easire to use because it would not be obvious which string

blocks would produce the optimal solution.
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Figure 9.18: Optimal paths in six homotopy classes.

9.7 Summary

In this paper, we proved that the decomposition method and homotopic DFA can be

(a) applied not only to simple paths but also to non-simple paths and (b) used to identify

homotopic equivalence between different paths. We presented the HARRT* and the TARRT*

algorithms, which used the decomposition method and which provided efficient sampling

structures for exploring topological constraints over multiple homotopy classes. HARRT*

utilized a bidirectional sampling structure that explores a subclass of a specified homotopy

class; HARRT* had a limitation in what problems it can solve because it used a technical

condition that we called the “via-point constraint”. TARRT* enforced sampling that honored

a set of possible homotopy classes and rewired the RRT* tree so that it explores multiple

homotopy classes in parallel; TARRT* had a technical condition that we called the “stretching

constraint”, but this constraint could be tuned to tradeoff computation time for larger

exploration. HARRT* showed better efficiency due to its bidirectional structure and its more

efficient sampling within a homotopy subclass, while TARRT* provided completeness in

searching all possible homotopy classes, including winding homotopy classes.
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Future work should apply HARRT* and TARRT* to different decomposition methods

and in higher dimensional spaces such as in a robotic manipulation problem using a 3D

decomposition method. Practical complexity of the algorithm will likely become an issue for

these problems.
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Chapter 10

Expressing Homotopic Requirements for Mobile Robot Navigation through

Natural Language Instructions 1

Abstract

Allowing a human to express topological requirements to a robot in language enables untrained

users to guide robot movement without requiring the human to understand sophisticated

robot algorithms. By using a homotopy class or classes to represent one or more topological

requirements, we build a framework that helps a robot understand a human’s intent. This

paper reviews a homotopic decomposition method that is used to convert any path into

a string, which allows homotopic path equivalence to be performed by comparing strings.

We then integrate the Homotopic Distributed Correspondence Graph (HoDCG) to infer the

homotopic constraint in the format of strings from a language instruction. Finally, we use a

homotopic path-planning algorithm that finds the optimal paths for a given objective and

homotopic constraint. Experiment results show how a language instruction is converted into

a path driven by an implicit topological requirement.

1To appear in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Authors
are Daqing Yi, Thomas M. Howard, Michael A. Goodrich and Kevin D. Seppi.
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10.1 Introduction

Language-based interactions between a human and a robot theoretically extend the scope

of interaction from only trained users to anyone who can use language. Language-based

interactions require that a robot can understand what a human supervisor intends when he

or she describes a task. Since humans are ostensibly good at high-level spatial reasoning,

telling a robot where to move and where to avoid is a direct and efficient way for a human

to express intent in assigning a task. With proper algorithmic support, humans need not

transform the human-like high-level information into robot-based quantitative models for

robot path-planning. We address this by allowing a human supervisor to specify a path

topology and describe it to a robot. For example, a human could say “go to the left of the

fountain and on to the hospital” in order to avoid the ambulance in Figure 10.1a, and “go

between the hotel and the shop on the way to the hospital” in order to keep away from the

traffic in Figure 10.1b.

(a) Left of the fountain (b) Between shop and hotel

Figure 10.1: Topological requirement for navigation

Such constraints can be expressed by, for example, having a human draw a path on

a map, but it is desirable to explore other ways of expressing constraints. One advantage

of using language to express constraints is that a human could think and express without

converting into a graphical or robotic perspective. Allowing the human to use language
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to express topological constraints requires that a robot is able to understand an abstract

topological description and then plan a path that honors the desired topology. In this paper,

a topological constraint for robot path-planning is derived from a language instruction. The

topological constraint defines a set of eligible paths that have the required topology shape.

The path-planning problem is finding the optimal path within this set of paths.

The mathematical notion of a homotopy is widely used in defining a topology constraint

of paths because it defines the similarity between paths within the same path topology. When

a path can be deformed into another path without encroaching into any obstacle, the two

paths are homotopic [12]. In path-planning, when the start position and the end position are

constrained, all the feasible paths can be classified into homotopy classes [12], each of which

includes all the paths that are homotopic. In this paper, we explore the spatial relations

between paths and objects in a world. By considering objects as obstacles, we can represent

a topological requirement by a homotopy class or a set of homotopy classes. We express a

topological requirement in a problem of instructing robotic navigation by

• translating a language instruction into a homotopic requirement; and

• planning a path subject to the homotopic requirement.

10.2 Related Work

There are a few approaches to helping a robot understand the topological information in a

language instruction. Understanding the requirement of an instruction for execution planning

depends on grounding the spatial information according to the phrases [63]. An execution

plan is inferred from the grounded information. A semi-structured grammar, e.g. Tactical

Behavior Specification [9, 15], is proposed as a guide for a human to express commands that

a robot can understand. The grounded spatial constraint from a command is integrated

into path-planning algorithms to get paths. The language understanding is extended to all

types of natural language. Language examples are used to train semantic parsers to extract

intents [25, 76]. Execution plans could be obtained by applying the extracted intents on the
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world. For better generalization, graphical models are used to model the relationships between

phrases and groundings [112]. In [51], DCG (Distributed Correspondence Graph) grounds

implicit constraints, which model the correspondences between phrases and groundings.

The correspondences between phrases and groundings can be factorized by conditional

independence assumption. A path-planning problem can be created to generate a path that

satisfies an inferred constraint. It has been successfully applied in spatial-constraint inference

from instructions [51].

As we are interested in inferring homotopic constraints, we need a format of representing

a homotopy class for identification. The homotopy class identification depends on the

recognition of the spatial relation between obstacles and a path. Homology, a different type of

similarity, is used as an approximation to homotopy. In [12], a map with obstacles is modeled

into a complex plane with undefined points. Then the homology of paths can be recognized

by comparing the complex integral values based on Cauchy theorem. Decomposition is

the most common approach to identifying the homotopies of paths. Voronoi diagram, the

classic decomposition method, is introduced to decompose a map that generates a topology

structure of decomposed disjoint regions. Different walks on this structure derive reference

paths of different homotopy classes [8]. Paths of diverse homotopy classes can be obtained by

deforming the reference paths. Another way is using a set of line segements that decompose

a map as reference frames [48]. How a path sequentially crosses the reference frames can be

used to represent its topological shape.

In addition to a homotopic constraint, a human also intends a specific objective in a

language instruction. Most motion-planning algorithms for homotopic constraints can only

find feasible paths [8, 48] or the shortest paths [44, 49]. We also include an objective in

planning a path, which leads to an optimal path-planning problem.

In this paper, we propose a framework for language-guided motion-planning algorithm,

which translates a language instruction into a path-planning problem and finds the optimal
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path accordingly. We describe the framework in Section 10.3, and provides experiment results

in Section 10.4 to support its performance.

10.3 A Framework of Language-instructed Path-Planner

We propose a language-instructed path-planning system that can understand the homotopic

requirement of a language instruction and generate the optimal path subject to the homotopic

requirement. Figure 10.2 shows the structure of the system. The Homotopic Distributed

Correspondence Graph (HoDCG), discussed in Section 10.3.1, infers spatial relations from a

language instruction. A map is decomposed according to the spatial relations in Section 10.3.2,

using a homotopic Deterministic Finite Automata (homotopic DFA) [128] to convert paths

into string representations that honor topological similarities. The spatial relations are

then used to generate rules that define qualified reference frame sequences in Section 10.3.3;

these sequences implicitly define a grammar of eligible strings. The joint set of this eligible

string grammar and the grammar defined by the homotopic DFA is the inferred homotopic

constraint. The Homotopy-Aware RRT* (HARRT*) [128], a homotopic path-planner, is then

used to find the optimal path in the homotopic constraint in Section 10.3.4.

Language HDCG Spatial
Relations

Map Decomposition

Homotopic DFA

Map

HARRT*
Topological
Constraint

Optimal
Path

Figure 10.2: System Framework
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10.3.1 Inferring Spatial Relations from Language

In this section, we adopt a graphical model that grounds spatial relations from a language

instruction. The spatial relations are used to derive a homotopic constraint. The homotopic

constraint represents a human supervisor’s requirement of path topology.

Our graphical model is derived from the Distributed Correspondence Graph (DCG) [51],

which is a factor graph that can efficiently ground language sentences. The graph consists of

a set of factor models. Each factor model defines a relationship among a correspondence φi,

a phrase λi, a grounding γi, and a set of child elements Γci . A factor model is visualized in

Figure 10.3.

Figure 10.3: Factor model

Essentially, such a factor graph builds a distribution that represents the correspon-

dences between groundings and a sentence. This distribution depends on a phrase structure

that is parsed from a sentence by a grammar parser. Figure 10.4 gives an example of a parse

tree from a sentence “walk by the left of the table”. The parse tree determines the factor

graph. The factor graph (Figure 10.5) is created by assembling the correspondences between

groundings and phrases (Figure 10.3) according to the parse tree (Figure 10.4). The inference

of the factor graph returns a set of groundings. The details are stated in [51].

We propose HoDCG (Homotopic Distributed Correspondence Graph) algorithm that

extends DCG for supporting homotopic requirements. HoDCG includes new types of ground-

ings to represent homotopies. Inferred groundings are organized to construct a homotopic

constraint by phrase structure information.
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Figure 10.4: “walk by the left of the table”

HoDCG includes a graph model that supports spatial relations as new groundings and

a mechanism that derives homotopic constraints from associated groundings. Figure 10.5

illustrates a structure of HoDCG, which extends the phrase structure in Figure 10.4. Given

the phrases as observed nodes, the inference process is a bottom-up maximum likelihood

search, as formalized in Equation (10.1).

Φ∗ = arg max
φij∈Φ

∏
p(φij | γij, λi,Γcij ,Υ). (10.1)

p(φij | γij, λi,Γcij ,Υ) corresponds to a factor model, as shown in Figure 10.3, Υ is the

world, and the output is a set correspondence values. As illustrated in Figure 10.3, when a

correspondence variable is true the grounding associated with the correspondence variable is

said to correspond with a given phrase.

In implementations, each factor model p(φij | γij, λi,Γcij ,Υ) is approximated by a

log-linear model with binary features, which is written as in Equation (10.2). Tuning the

binary feature weight µ changes the approximation of the probability p. The Limited-memory
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Figure 10.5: HoDCG structure of “walk by the left of the table”.

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [71] algorithm is used in the optimization in

the training process.

Φ∗ = arg max
φij∈Φ

∏
Ψ(φij, γij, λi,Γcij ,Υ),

Ψ(φij, γij, λi,Γcij ,Υ) =
e
∑
l µlfl(φij ,γij ,λi,Γcij ,Υ)∑

q e
∑
l µlfl(φq ,γij ,λi,Γcij ,Υ)

. (10.2)

HoDCG grounds spatial relations from a language instruction. We use the spatial

relations to obtain a homotopic constraint.

10.3.2 Encoding Path Homotopy

We firstly need a format that encodes the shape of a path, which represents a homotopy class.

By the definition of homotopy, we know that paths in the same homotopy class share the

same topology that is defined by spatial relations with obstacles. This implies a connection

between a homotopy class and a given spatial relation.

We use a decomposition method [128] that divides a map into subregions, which is

derived from the Jenkins method as in [48]. The decomposition supports the extraction of

topological information, which is obtained by how the path sequentially visits the subregions.

Based on the proposed decomposition method, a homotopic DFA (Deterministic Finite

Automata) Mh [128] can be constructed that converts a path σ to a string representation v,
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which is written as v = Mh(σ). The string representation is used to identify the homotopic

equivalence, which distinguishes topological difference of paths.

In this paper, we present a novel decomposition method, which is modified from the

one in [128]. The change we made is moving the center point c into an obstacle so that more

generated reference frames are associated with the obstacle. Specifically in our case, the

center point locates in one of the obstacles that is associated with inferred spatial relations.

This makes the decomposition centered at the obstacle.

The map decomposition method starts with a random sampling process. First, a

representative point bk is randomly sampled from each obstacle Bk. This point may not lie on

a line that connects any other two representative points. A center point c is sampled inside one

of the obstacles, which must also not lie on a line that connects any two representative points.

Restricting the center point in an obstacle reduces ambiguity in homotopy identification. A

radial structure is created from the center point c toward all other representative points bk.

Obstacles in the map cut the radial structure into line segments. The end of each line segment

terminates within either an obstacle or a map boundary. We use the line segments to identify

the homotopy of paths. The line segments are defined as reference frames R, which separate

the map into subregions S. Figure 10.6a gives an example of the map decomposition.

S1-0

S2-0

S3-0
S4-0

S3-1

(a) Ref. frames

S2-0

S3-1

S3-0

S1-0

S4-0

(b) State trans. (ST)

Figure 10.6: Map with obstacles.
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A sequence of reference frames that a path visits reveals the topological information.

We assign an ID character to each reference frame. The sequence of reference frames can

be represented by a string of ID characters. In a path-planning problem, both a start

position and a goal position are given, which imply a start subregion and a goal subregion,

respectively. In Figure 10.6a, the blue point is the start position and the maroon point is the

goal position. Let each subregion be a state of the DFA, and each reference be an edge of the

DFA. We can have a DFA [128] that represents how subregions in Figure 10.6a are connected

in Figure 10.6b. The DFA in Figure 10.6b is then modified for homotopic equivalence, which

derives a homotopic DFA [128] in Figure 10.6b.

The homotopic DFA abstracts any path into a string representation. The REPTrim()

algorithm in [128] translates a string for any path into the smallest possible string for any

path within that homotopy class. Thus, the homotopy of any two paths can be identified by

comparing the strings generated by the homotopic DFA after processed by the REPTrim()

algorithm. Notice that we use a map decomposition method that is slightly different from our

prior work in [128]. Because the center point is moved into an obstacle, there is no reference

frame that is connected to the center point. It removes the ambiguity brought by reference

frames that are connected to the center point, but preserves the validity of other properties.

We restate the key property from [128] because it will be important to the results of this

paper:

Theorem 3. REPTrim(Mh(σi)) = REPTrim(Mh(σj))

This theorem means that REPTrim(Mh()) encodes a path into a string, and we can

use the strings of paths to identify homotopies.

10.3.3 Rules from Spatial Relation Functions

As discussed above, we suppose that humans can reason and express intent using spatial

language. Thus, natural language does not necessarily describe a path topology. Rather, a

human’s instruction implies a spatial relation that constrains the allowed path topologies. In
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Section 10.3.2, a homotopic DFA is used to represent abstract topologies in a string format

when a map, a start position and a goal position are known. In this section, we describe how

to determine which of the strings generated by a homotopic DFA satisfy a spatial relation

constraint specified by a human.

Suppose that a spatial relation constraint is always associated with objects in a map.

We define a spatial relation function over objects O and returns a corresponding rule `.

A path will never cross multiple reference frames at the same time. Given this

condition, we propose a set of operators that assemble ID characters of reference frames into

strings, and describe how these character operators correspond to rules on spatial relations.

• CONCATENATION ∩ is used to concatenate two ID characters. It corresponds to

a sequential order of visiting corresponding reference frames.

• UNION ∪ is used to union two ID characters. It indicates that a path may visiting

either of the regions that correspond to the two ID characters of the reference frames.

• NEGATE ¬ is used to negate one ID character. It indicates that the region associated

with an ID character should be avoided.

The following examples of spatial relation functions illustrate how these functions are

translated into operators on the IDs:

• (r1 ∪ · · · ∪ rn) = InBetween(o1, o2),

• (r1 ∪ · · · ∪ rn) = LeftOf(o) | RightOf(o) | TopOf(o) | BottomOf(o),

• ¬(r1 ∪ · · · ∪ rn) = Avoid(InBetween(o1, o2)),

• ¬(r1 ∪ · · · ∪ rn) = Avoid(LeftOf(o)),

• ¬(r1 ∪ · · · ∪ rn) = Avoid(o) = Avoid(LeftOf(o) ∪ RightOf(o) ∪ TopOf(o) ∪

BottomOf(o)).

A rule ` describes a logical proposition of reference frames in the disjunctive normal

form. For example, a sentence ”go between B and C ” for the world in Figure 10.7a is
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translated to the rule InBetween(B,C), which in turn returns the ID character from

visiting the reference frame that connects object B to object C. A sentence “go by the

left of B” is associated with LeftOf(B) returns ID characters that locate at the left of

object B, which is shown in Figure 10.7b. Also, a sentence “avoid B” is associated with

Avoid(B), which equals to avoiding four direction near object B. Also by the logic, we can

have ¬(r1 ∪ · · · ∪ rn) = ¬r1 ∩ · · · ¬ ∩ rn. It indicates that all the reference frames associated

with object C should be avoided.

A

B

C

(a) InBetween(B,C)

A

B

C

(b) LeftOf(B)

A

B

C

(c) Avoid(B)

Figure 10.7: Spatial Relation Functions.

We can see that a spatial relation function can return multiple associated reference

frames. Assembling rules by operators into a new rule supports complicated semantic in a

language expression.

• Sequence There are often many orders implied in forcing a sequence of ID characters

of reference frames. For example, “go to left of A before going to bottom of B”. Let `A

be a rule for spatial relation with object A and `B be a rule for spatial relation with

object B. We can have the rule for the command as `A ∩ ∗ ∩ `B.

• Reverse It is used to negate a given rule. For example, “never go to left of A”. It

means all the reference frames that are on the left of object “A” should be avoided,

which is written as ¬`A.

If we do an exhaustive search on the topology of homotopic DFA, we can have all

the possible strings from a start state to a goal state. Each string represents a sequence of
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reference frames. Rules derived from a spatial relation function can be used to filter out

ineligible strings. The set of eligible strings defines a homotopic constraint. Only paths that

the homotopic DFA generates strings belonging to the set are considered in planning.

10.3.4 Homotopic Path-Planning

We use a homotopic path-planner to find a path by a homotopic constraint. Because of the

lack of precision in an instruction, one or more homotopy classes may be included in defining

a homotopic constraint. In above sections, we can derive a homotopic constraint from a

language expression.

We also want to support adverb in a language instruction [123]. For example, “carefully”

and “quickly” indicate different criteria in measuring the performance. This implies a specific

objective to consider in planning a path. The objective differs with different verbs and

adverbs in language. Thus, we define our problem as a homotopy-based optimal path-planning

problem [128]. The objective and homotopic constraint are both inferred from a language

expression.

We need an algorithm that could explore several homotopy classes in parallel and

return the optimal path of each class, because a homotopic constraint could consist of several

homotopy classes. HARRT* (Homotopy-Aware RRT*) proposed in [128] is a homotopy-based

optimal path-planner, which utilizes the RRT* structure to explore a map according to

homotopic information. A homotopic DFA is used to identify the homotopic information

of each branch of an RRT* structure. The homotopic information is used to constrain the

exploration only in necessary regions. There are two tree that are extended from the start

position and the goal position bidirectionally. By the asymptotic optimality of RRT*, both

trees converge to optimal structures. To any position, one provides an optimal-to-come

subpath, while the other provides an optimal-to-go subpath. Concatenating two subpaths

gets a path that is optimal from the start to the goal subject to a constraint of visiting the

concatenating position. An example is shown in Figure 10.8. A node highlighted in orange
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color in the goal tree. A red dash-line circle indicates the neighboring nodes for adding and

rewire process in tree extension. A path in orange color is obtained from this node. At each

iteration, one path is found in the start tree, and one path is found in the goal tree. If any

new path is better than the current best found path in the hotomopy class it belongs to, the

optimal found path will be updated. The optimal paths of multiple homotopy classes can be

obtained, because of the variation in selecting concatenating positions. We can thus have the

optimal paths of homotopy classes after iterations.

start

goal

Figure 10.8: HARRT*

10.4 Experiment

In this section, we use simulations to validate the language-instructed path-planner. In [51],

how the goal is inferred from a language instruction is demonstrated. In this paper, we focus

on only how a homotopic constraint can be inferred and how it is used for instructing the

navigation of a robot. The experiments were running in Gazebo simulator, in which we

instructed a Turtlebot moving in among numbered boxes.

Currently the training of HoDCG has not been applied to a big dataset. But it has

only been verified with a small dataset with five examples that enumerates all the possible

spatial relation functions. The inferred result is consistent with the training dataset. Some

examples are shown in Table 10.1. Because HoDCG uses the same training and inference
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(a) Turtlebot (b) Gazebo

Figure 10.9: Simulation environment.

algorithm with DCG and only extends the search space with new types of grounding, we

observe that HoDCG has a consistent performance with DCG [27, 51].

Table 10.1: Examples for training

LeftOf(o) “Swing by the left of ...”
InBetween(o1, o2) “Go between ... and ...”
Avoid(InBetween(o1, o2)) “Avoid going between ... and ...”
Avoid(LeftOf(o)) “Stay away from the left of ...”

We obtained a map of the environment with three boxes from the Gazebo, which

is shown in Figure 10.10a. Each box is labeled for reference. We choose maximizing the

distance to any obstacle or environment boundary as the objective for planning, and have

the costmap of the environment shown in Figure 10.10b. The darker a position is, the lower

cost there is.

Figure 10.11 gives an example of an instruction “walk by the left of box 3”. Figure

10.11a illustrates a HoDCG that is created from the instruction. From the inferred spatial

relation, the path is required to two eligible reference frames, which are green bold lines in

Figure 10.11b. The red point is the start position, and the blue point is the goal position.

From the costmap in Figure 10.10b, the optimal path is obtained and is shown in orange

color.
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(a) Map with three boxes (b) Collision avoidance

Figure 10.10: Map and costmap of an environment with three boxes

(a) HoDCG (b) HARRT* and path

Figure 10.11: “Walk by the left of box 3”.
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Similarly, we can have a HoDCG structure generated for “go between box 3 and box

1”, which is shown in Figure 10.12a. As a result, a reference frame that connects box 3 and

box 1 is inferred to be required to visit, which leads to a planned path accordingly in Figure

10.12b.

(a) HoDCG (b) HARRT* and path

Figure 10.12: “Go between box 3 and box 1”.

We also tested the negation of a spatial relation. Figure 10.13 shows an example for

“Avoid going in between box 3 and box 2”. A negation of in-between spatial relation is inferred

from a corresponding HoDCG. A bold red line is shown in each subfigure of Figure 10.13,

which indicates a reference frame that is not allowed to cross. Subfigures show three different

solutions in different homotopy classes all satisfy this homotopic constraint. It reveals that

there is lack of precision in the instruction. We can either take the optimal of the three as

the solution for robot navigation or introduce an interactive process for human to select.

We also tested in a more complicated environment, which is shown in Figure 10.14a.

There are nice boxes in the environment, which means a higher variety in spatial relations

and a bigger number of homotopy classes. The corresponding costmap for collision avoidance

is given in Figure 10.14b.
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Figure 10.13: “Avoid going in between box 3 and box 2”.

(a) Map with nine boxes (b) Collision avoidance

Figure 10.14: Map and costmap of an environment with nine boxes
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With more possible spatial relations and homotopy classes, the potential imprecision

of a language instruction is increased. Figure 10.15 shows four paths of different homotopy

classes all satisfy the inferred in-between spatial relation, which is inferred from an instruction

“go between box 5 and box 8”.

Figure 10.15: “Go between box 5 and box 8”.

If fewer number of homotopy classes are to be considered, more constraints should be

stated in an instruction to reduce ambiguity. Figure 10.16 shows an example of an instruction

“Go between box 8 and box 6 and avoid the left of box 1”. Less paths are obtained because

less homotopy classes are eligible for the inferred homotopic constraint.
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Figure 10.16: “Go between box 8 and box 6 and avoid the left of box 1”.

10.5 Future Work and Conclusion

The sequence of spatial relations, which supports a sentence like “go ..., then ...” , is not

included in the experiment yet. It depends on that the inference of HoDCG could provide

sequential information of a set of groundings, which will be added in future work. Enabling

the sequence of spatial relation would be another efficient way of reducing ambiguity in a

language instruction, which constrains a problem to less number of eligible homotopy classes

in a complex environment. We are also going to integrate the framework with other planning

information for expanding the features of language instructions, which will be a hierarchical

structure [27] that include goal constraints and different objectives. Soft constraints will

then be introduced to better support human requirements. For example, in many scenarios,

“avoid” only indicates a soft constraint instead of a hard one.

We propose a framework of language-instructed path-planning that integrates a

language inference model (HoDCG) and a homotopic path-planning algorithm (HARRT*)

so that a robot could read a homotopic requirement in a human’s instruction and planning

a required path. The translation from an instruction to a path consists of a mapping from
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paths to strings, a graph model that interpret an instruction into homotopy classes and a

path-planning algorithm that finds optimal paths of the homotopy classes.
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Chapter 11

Summary and Future Work

11.1 Summary

The research presented in this dissertation constructs a framework that translates qualitative

information from a human into quantitative paths for a robot. In the translation process,

qualitative requirements are extracted from human information (e.g. natural language

instructions). The qualitative requirements are converted into objectives and constraints,

which define path-planning problems. Planners derive paths from planning problems and

send them to a robot to execute.

In converting from qualitative to quantitative, we presented algorithmic solutions to

the following four problems: grounding words to partially suport language understanding for

path-planning, multi-objective path-planning, homotopy-based optimal path-planning, and

submodular path-planning with a reference-path constraint.

11.2 Future Work

This section presents some natural extensions from current research. We present the future

work as a broad theme, and then elaborate on key pieces of this broad theme.

In the research presented in this dissertation, we used objectives and constraints

to translate from high-level reasoning to low-level planning. Human information is input

as high-level reasoning. A navigation plan is output from the low-level planning, as in

Figure 11.1. It is possible to do the reverse by taking raw data in the form of a demonstration

be the input to the low-level planning and then learn a policy as output from the high-level
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reasoning; this is illustrated in Figure 11.2. Such a bi-directional information flow between

qualitative and quantitative can potentially enable better exchange of information between

robot and human representations and problem solving.

High-level Reasoning

Low-level Planning

constraintsobjectives

human
information

navigation

Figure 11.1: From high-level to low-level.

High-level Reasoning

Low-level Planning

constraintsobjectives

demonstration

learned 
policy

Figure 11.2: From low-level to high-level.

A natural next step is to extend human-robot collaboration so that it depends less on

prior information. Properly done, perhaps the robot could think using high-level, human-like

reasoning that makes it more robust to situation changes and utilizes more types of human

information.

In many scenarios, there is no precise map available for execution planning. A

human only provides principles or a rough plan for execution, e.g. a topology defines spatial
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relations with landmarks in a navigation task. A robot needs be capable of updating the

map information through observation will executing and then re-planning local paths that

follow the humans requirements in an online manner. Future work should extend multi-

objective planning and homotopy-based optimal planning to support dynamic and unknown

environments. These extensions require that the algorithms can adapt to situation changes

and execute re-planning efficiently. A robot can make autonomous decision for adapting to

situation dynamics in navigation, but the adaption and re-planning are constrained by the

high-level plan so that mission requirements can still be satisfied.

If a robot is able to actively collect information for the purpose of learning the

environment, it should be able to work autonomously without prior information. However,

the robot may actively seek a human’s help in execution. The language model could be

extended so that it can generate language instructions from semantic information. The robot

could then seek request information and help from a human coworker. Also the robot can

either interpret natural and qualitative human-provided information or simplify big and

complicated data into simple and human-natural representations. The robot would be able

to actively learn and refine human intent, which will greatly benefit the interaction between

human and robot.
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Appendix A

Input-to-State Stability Analysis on Particle Swarm Optimization 1

Abstract

This paper examines the dynamics of particle swarm optimization (PSO) by modeling PSO

as a feedback cascade system and then applying input-to-state stability analysis. Using a

feedback cascade system model we can include the effects of the global-best and personal-best

values more directly in the model of the dynamics. Thus in contrast to previous study of PSO

dynamics, the input-to-state stability property used here allows for the analysis of PSO both

before and at stagnation. In addition, the use of input-to-state stability allows this analysis

to preserve random terms which were heretofore simplified to constants. This analysis is

important because it can inform the setting of PSO parameters and better characterize

the nature of PSO as a dynamic system. This work also illuminates the way in which the

personal-best and the global-best updates influence the bound on the particle’s position and

hence, how the algorithm exploits and explores the fitness landscape as a function of the

personal best and global best.

1Published in GECCO ’15 Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. Authors are Daqing Yi, Kevin D. Seppi and Michael A. Goodrich.

256



www.manaraa.com

A.1 Introduction

Particle Swarm Optimization (PSO) is a popular and well-studied algorithm that was originally

motivated by the flocking behaviors of birds and insects. Soon after its first publication it

was discovered that the structure of the PSO algorithm is amenable to formal analysis using

dynamical systems theory (sometimes referred to as dynamic systems) [30]. The use of this

theory has informed the setting of parameters [54, 115], led to the proposal of new variants

of the algorithm [30], and allowed for the analysis of the behavior of the algorithm [100],

especially the behavior at stagnation, that is, when the algorithm fails to find better solutions

[30].

While the study of the algorithm at stagnation is important and a significant first

step, it only answers questions about the behavior at the point that PSO has degenerated

into random search. At that point the algorithm can be mimicked by simply sampling from

the appropriate distribution [91]. In this paper we extend the limited work that has been

done to understand the behavior before stagnation, that is, when the unique mechanisms of

PSO are directing the behavior of the algorithm.

By using a feedback cascade model we are able to include both what we refer to as the

position update which comes from the PSO equations, but also the input update, that is, the

effect of the personal and global best. This paper does so in contrast to prior work which

focuses on the position update. A cascade model also allows us to make fewer assumptions

in mapping from PSO to a dynamical system model. Using this model we are able to derive

the conditions under which the process is input-to-state stable [55], prove bounds on both

the particle motion and the mean of particle motion. The input-to-state stable conditions

and the bounds can inform parameter adjustments and other properties that can, in turn,

control the extent to which the algorithm explores or exploits the fitness landscape. This is

especially valuable in the context of the design of future PSO variants.

The body of this paper is organized as described here. In section A.3, we model

the PSO dynamics as a feedback cascade system, which enables the input-to-state stability

analysis. The definition of input-to-state stability (ISS) and its meaning in the context of PSO

are also given. Section A.4 shows that for particular parameter values, the position-update

component of a particle is input-to-state stable. Using the ISS property we then give the

bound on particle motion. We also use the ISS property in the context of the analysis of

the moments (the mean and higher moments) of particle motion. In section A.5, we use

the ISS property to help analyze the dynamics of the particle. Using the ISS property of

the input-update component, we can analyze the dynamics of the particle before and at

stagnation.
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A.2 Related Work

Although the input-to-state stable analysis given in this paper can be applied to many versions

of PSO, for this work we use the formulas from Kennedy’s most recent definition of PSO[17]

for the constricted position-update rule. The constricted position-update rule is

vij(k + 1) = χ[vij(k) + φPuPij(k)(xPij(k)− xij(k))

+ φGuGij(k)(xGij(k)− xij(k))],
(A.1a)

xij(k + 1) = xij(k) + vij(k + 1). (A.1b)

xij(k) represents the position of particle i in dimension j at time k. Similarly, vij(k) represents

the velocity of particle i in dimension j also at time k. xGij(k) and xPij(k) are global best

(actually the topology best or local best) and personal best positions observed by the swarm

and the particle respectively. uGij(k) and uPij(k) are independent random values drawn from

[0, 1]. χ ∈ (0, 1), φP and φG are algorithm parameters.

Due to the stochastic nature of the particle’s path and the social interaction represented

by the topology, the dynamics of the algorithm is hard to evaluate in general. Understanding

how the particles move guides how to improve the algorithm design [14], particularly the

stochastic factors in the velocity update of Equation (A.1a). However once a particle is no

longer able to find improvements in xG and xP , it exhibits the stagnation phenomenon [31].

In this state the analysis is easier since there is no effect from the topology.

Previous work that assumes stagnation can be categorized into two groups each

based on how the analysis treats the stochastic factors. The first approach is to ignore the

stochastic factors. Using this simplification, the convergence of a particle at stagnation can

be analyzed [29, 30]. The convergence trajectories can be estimated [116] and the conclusions

are compared with empirical results [29]. By building a linear system model [99], the PSO

algorithm can be viewed as a closed loop system and the convergence can be analyzed. Based

on such a convergence analysis, parameters can be set for best effect [115].

The second approach for handling the stochastic factors is based on stochastic analysis.

By taking the mean of the stochastic variables, the stochastic terms can be converted into

constant terms. A convergence analysis of the mean and variance of a particle at stagnation

can also be obtained by using the characteristic equation in a discrete-time model [54]. In

a similar way, other moments can be computed [91–93]. Using the discrete-time system

model of different moments, the equilibrium can be found. The stability requirements can be

obtained from the norm by setting the root values of the characteristic equation to all be less

than 1.
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There is also some work that addresses the dynamics when a particle is not in the

stagnation phase. The discrete-time dynamics of PSO, that is, the dynamics of particle

trajectory, can be approximated using a continuous-time model [41]. Furthermore, the

probability of convergence in time can be analyzed by viewing the update process as a random

search process [117]. The process of particles reaching a local optimum has also been analyzed

[100].

A.3 Input-to-state stability of PSO

Input-to-state stability analysis consists of two parts:

• the decomposition of the PSO algorithm into components, and

• the input-to-state stability of each component.

In this section, we model particle motion using a feedback cascade model. Then we review

the definition of the input-to-state stability (ISS). We also explain why ISS should be applied

to PSO.

A.3.1 Feedback Cascade Model

For the purpose of input-to-state stability analysis we decompose the PSO algorithm into

components as shown in Figure A.1. This decomposition is comprised of cascaded components

(the input update, followed by the position update) and the feedback of the historical state.

These two components are the input-update component for the global best (xGi (k)) and the

personal best (xPi (k)), and the position-update component for particle position (xi(k + 1)),

which depends on the inputs xGi (k) and xPi (k) as well as the previous position xi(k).

The properties of this system can be analyzed using the input-to-state stability of the

position-update component and the input-update component. Given an input-to-state stable

position-update component, we will see that the convergence of xi(k) depends on bounds on

xGi (k) and xPi (k).

A.3.2 Input-to-state stability

Before reviewing the definition of input-to-state stability, we first introduce several types of

functions [55].

• K-function K : a function α : [0, a) → [0,∞) is continuous, strictly increasing and

α(0) = 0.
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Position Updatefrom
swarm 

Input Update

Particle

Figure A.1: System structure of PSO

• K∞-function K∞ : a function α : [0, a) → [0,∞) is a K-function and α(s) → ∞ as

s→∞.

• KL-function KL : a function β : [0, a)× [0,∞)→ [0,∞) satisfies:

1. ∀t ≥ 0, β(·, t) is a K-function;

2. ∀s ≥ 0, β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.

These functions are used to define input-to-state stability in Definition 1.

Definition 1 (Input-to-state stable [55]). For x, a discrete-time system defined as follows:

x(k + 1) = f(x(k), u(k)), (A.2)

with f(0, 0) = 0 2, the system is (globally) input-to-state stable if there exist a KL-function β

and a K-function γ such that, for each input u ∈ lm∞ and each ξ ∈ Rn, it holds that ∀k ∈ Z+,

|x(k, ξ, u)| ≤ β(|ξ|, k) + γ(‖u‖). (A.3)

The β() term in Equation (A.3) defines an initial bound with a decaying property.

The γ() term in Equation (A.3) defines a bound determined by the input. This means that

the β() term gradually decreases to zero and the position is bounded by a range determined

by the bound on the input.

2This means that x = 0 is an equilibrium of the 0-input system.
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A.3.3 Importance of input-to-state stability

Under certain conditions the dynamics of complex systems can be understood by first

decomposing the system into a set of individual input-to-state stable components. We will

take this approach with PSO. Parallel combination of input-to-state stable components yields

a combined structure that is also input-to-state stable [61]. In the case of PSO and as shown

in Figure A.1, if each component (representing a single dimension) is input-to-state stable, the

position-update component which combines all the dimensions is also input-to-state stable.

Thus we have Property 1.

Property 1. The position-update component is input-to-state stable if the position update in

each dimension is input-to-state stable.

This simplifies the analysis of the system since it allows us to consider each dimension

separately. The serial connection and the feedback connection also lead to some interesting

property from input-to-state stability, which will be discussed in Section A.5.

The input-to-state stability analysis also provides the tool for the analysis of the

convergence of PSO and the analysis of bounds on particle motion. PSO is designed to

strike an effective balance between exploring and exploiting a fitness landscape. A bound

on a particle’s state is an indicator of the nature of that balance. When this bound is large

the particle is exploring. However, as a particle finishes exploring and reach stagnation, a

particle’s position should converge.

Input-to-state stability implies that the state of the system is bounded in a range

determined by the bounds on the input. Before stagnation, when the personal best and

global best values have not converged, we can expect only a loose bound on the particle state.

These looser bounds reflect both what is know about the update process itself and what is

know about the inputs to the update process, that is, the personal best and the global best.

We call the bounds on the global best and personal best the “exploit radius” and the

bounds on the particle’s position a “explore radius”. The ratio of the explore radius to the

exploit radius is determined by the parameters of the position-update component. However,

if the personal best and global best converge to an estimated optimal position, the exploit

radius falls to zero and the explore radius converges to a bound.

A.4 Analysis of Input-to-state stability in PSO

We then show PSO satisfies the definition of input-to-state stability when the parameters of

PSO are set in a requisite range. We also derive the bounds implied by the ISS property and
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Explore radius

Exploit radius

Figure A.2: Exploration and exploitation.

use the ISS property in Section A.5 to find bounds on particle motion. Last, we will use ISS

to analyze the moments (the mean and higher moments) of particle motion.

In our analysis of the PSO algorithm, we seek to understand how the particles converge

to some position x∗, which is intended (not guaranteed) by the algorithm to be the global

minimum position of the objective function.

For this analysis we use a one-dimension particle and extract the linear form of the

position-update component. As noted above, the one dimensional case can be extended to

many dimensions.

We begin our analysis of PSO input to state stability by rewriting the PSO equations

in (A.1) in the following way:

X(k + 1) = A(k)X(k) +B(k)U(k) (A.4)

with

A(k) =

[
χ −χφGuG(k)− χφPuP (k)

χ 1− χφGuG(k)− χφPuP (k)

]
and

B(k) =

[
χφGuG(k) χφPuP (k)

χφGuG(k) χφPuP (k)

]
.

The system state is X(k) = [v(k), x(k) − x∗]T , and the system input is U(k) =

[xG(k) − x∗, xP (k) − x∗]T 3. The convergence of this model means that v(k) → 0 and

x(k)→ x∗.

3We use x∗ to represent an equilibrium point to the system. In PSO, it can be a local optimum, a global
optimum, or an estimated optimum. We use it as a reference point to check the bounds.
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A.4.1 Conditions for input-to-state stability for position update in PSO

Using the definition of the PSO position update as given in Equation (A.4), PSO can be

shown to be input-to-state stable as defined in definition 1.

Theorem 1. When |λmax(A(k))| < 1, the position-update component of PSO (A.4) is input-

to-state stable.

The proof follows the ISS-Lyapunov-function approach. The ISS-Lyapunov function,

defined in Appendix A.6, can be used to prove the input-to-state stability of a system and

analyze the state bound[55]. The details of the proof are given in Appendix A.6.

Note that in Equation (A.4), [v(k), x(k)− x∗]T = [0, 0]T is an equilibrium position

when the input [xG(k)−x∗, xP (k)−x∗]T = [0, 0]T . Without loss of generality, for an arbitrary

optimization problem x∗ would typically not be at the origin. In such a problem, input-to-

state stability means that the boundaries of |v(k)| and |x(k)− x∗| would be transformed and

thus determined by |xG(k)−x∗| and |xP (k)−x∗|, but the properties of ISS apply independent

of where the function is centered.

Having shown that PSO is input-to-state stable we can now state a bound on particle

position.

Corollary 1. Given a bound on the input ||u|| in the position-update component, we have

the bound on the particle position from Equation (A.4).

∀k,|x(k)− x∗| ≤

max
(
|x(0)− x∗|, γ(|

[
xG(k)− x∗, xP (k)− x∗

]T |)) , (A.5)

in which γ = α−1
3 ◦ σ. (α3 and σ are defined in Appendix A.6.)

Proof. This is obtained from Remark 3.7 in [55] and by choosing P be a symmetric identity

matrix. Furthermore we drop the velocity part because |x(k)−x∗| ≤ |[v(k), x(k)−x∗]T |.

The max part is needed to account for the effect of the starting point, represented by

the first parameter. Eventually the effect of the starting point no longer affects the system,

formally:

∃T,∀k ≥ T, |x(k)− x∗| ≤ γ(|[xG(k)− x∗, xP (k)− x∗]T |). (A.6)

Figure A.3 gives an example on how a particle’s boundary is determined by the personal best

and global best.
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Figure A.3: A bound on a particle’s position by a reference point x∗ from Equation (A.6).
The ratio of two radii indicates γ.

Figure A.4: Parameter space

Corollary 2. Let A(k) =

[
χ −χφ
χ 1− χφ

]
, in which φ ∈ [0, φsup] , φsup = φP +φG and χ ∈ (0, 1).

When φsup ∈
(

0, 2(1+χ)
χ

)
, the system (A.4) is input-to-state stable.

The proof is given in Appendix A.6.

Figure A.4 shows the parameter space. The x-axis is φsup = φP + φG and the y-axis

is χ. The stable region in dark blue is obtained from eigenvalue test on Theorem 1. The

red boundary is obtained from Corollary 2. It indicates the equivalence of the results from

Theorem 1 and Corollary 2.

A.4.2 Moment Analysis

Using the same perspective of the feedback cascade system, the input-to-stable stability

analysis can also be applied to moment analysis. Like the others [54, 92], we derive models

for the statistical features (moments) of the particle’s position at stagnation. In contrast to
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this prior work, input-to-state stability analysis can also provide bounds before a particle

reaches stagnation.

We adopt the approach of Jiang, Luo & Yang [54] to construct an ISS model for the

mean. Using that model E(x(k)) converges to

x̂ =
φPxP + φGxG

φP + φG

in stagnation. If we treat x̂ as a swarm average estimation on the optimum, we are interested

in how E(x(k)) deviates from x̂.[
E(x(k + 1))− x̂
E(x(k))− x̂

]
= Am

[
E(x(k))− x̂

E(x(k − 1))− x̂

]

+Bm

[
E(xP (k))− x̂
E(xG(k))− x̂

]
,

(A.7)

with

Am =

[
1 + χ− χφP

2
− χφG

2
−χ

1 0

]
and

Bm =

[
χφP

2
χφG

2

0 0

]
.

The convergence of E(x(k)) in stagnation is given in [54, 92]. Even without the

stagnation assumption, the input-to-state stable analysis on Equation (A.7) indicates how

E(x(k)) will deviate from x̂ anytime we know how E(xG(k)) and E(xP (k)) deviate from x̂.

Stagnation is a simple case of knowing how E(xG(k)) and E(xP (k)) deviate from x̂. This

special case is discussed more later in this paper.

We now proceed to show the conditions that must hold for the mean model to be

input-to-state stable.

Theorem 2. The system (A.7) is input-to-state stable, if |λmax(Am)| < 1.

Proof. The proof process is similar with Theorem 1, but we can get a constant symmetric

positive definite Qm from ATmPAm − P = −Qm.

Similar to Corollary 2, we have Corollary 3 for parameter selection on mean convergence.

Note that when the condition in Corollary 2 is satisfied, the condition in Corollary 3 is

also guaranteed. This means that when the system (A.4) is input-to-state stable, the mean

dynamics (A.7) is also input-to-state stable.
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Corollary 3. Let Am =

[
1 + χ− χφP

2
− χφG

2
−χ

1 0

]
, in which φ ∈ [0, φsup] and φsup = φP+φG

and χ ∈ (0, 1). When φsup ∈
(

0, 4(1+χ)
χ

)
, the system (A.7) is input-to-state stable.

The proof is given in Appendix A.6.

Similar to Corollary 1, we can use the Qm to determine the state bound.

Corollary 4. If the system (A.7) is input-to-state stable, we have a bound

∃T,∀k > T,

|E(x(k))− x̂| ≤ γm|
[
E(xP (k))− x̂, E(xG(k))− x̂

]T |, (A.8)

with

γm =
2‖Am‖2‖Bm‖2 + λmin(Qm)2‖Bm‖2

2(λmin(Qm))3
. (A.9)

In a similar way, we can apply the input-to-state stability analysis to the variance

model [54] and higher order moment models [93].

A.5 Implications of particle ISS

In this section, we add the input-update component that was first shown in Figure A.1 and

then analyze the convergence of particle position.

Since by Theorem 1 PSO is input-to-state stable, and therefore by Corollary 1 the

stability of the cascade system depends on the output of the input-update component. We

can say:

1. If the input-update component generates converging personal best and global best, the

bound of the particle position will converge;

2. If the personal best and global best vary within a bound, the particle will converge

within a bound;

3. If the personal best and global best become constant, the particle will converge within

a bound.

4. If the personal best and global best are constant and the same, the particle will converge

toward the global best.

By Theorem 2 and 4, we can make similar statements about the particle mean. As well, this

boundary analysis could be applied to higher moments.

Furthermore, by Equation (A.5), we know that the convergence of a particle’s position

x(k) to x∗ depends on how xP (k) and xG(k) converge to x∗ when the position-update
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component is input-to-state stable. In particular, the bound on the distance between a

particle’s position and x∗ is determined by the initial distance x(0) − x∗, xP (k) − x∗ and

xG(k)− x∗.

A.5.1 Stagnation

Since stagnation is defined as a state where a particle fails to find better positions, in

stagnation xP (k) and xG(k) are constant in k, and can thus be represented as xP and xG

respectively. If we assume that uP (k) and uG(k) are equivalent and constant, it can be stated

that

x̂ =
φPxP + φGxG

φP + φG
(A.10)

is an equilibrium point for stagnation as noted in previous work [30].

By Theorem 2, in stagnation the mean of the position will converge. Corollary 1

describes a bound on position as a function of the PSO parameters. Similarly, assuming that

parameters are chosen that will also lead to the convergence of higher moments similar to

previous work [54, 93], the pattern of particle movement at stagnation could be simulated by

a distribution constructed to be consistent with PSO moment information[93].

By letting x∗ = x̂ be the reference point, and by Corollary 1, we can go beyond prior

work and can identify a bound on PSO behavior at stagnation:

∃T,∀k > T, |x(k)− x̂| ≤ γd|[xP − x̂, xG − x̂]T |, (A.11)

with

γd =
2‖A′‖2‖B′‖2 + λmin(Q′))2‖B′‖2

2(λmin(Q′))3
. (A.12)

Particularly, when xP = xG, we have x̂ = xG = xP . By Equation (A.11) we know that

∃T, x(T ) = xG, which means x(k) → xG. Thus we have shown the convergence of PSO in

stagnation without treating the random terms as constants required by the work described in

Section A.2.

A.5.2 Before stagnation

Input-to-state stable analysis also supports understanding the cases before stagnation. When

the xP (k) and xG(k) are not constant, the system state depends on the property of the

input-update component. The personal-best update is

xPi (k) = arg max
x∈{xi(k),xPi (k−1)}

f(x). (A.13)
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The global-best update is

xGi (k) = arg max
x∈{xi(k),xGi (k−1)}

f(x). (A.14)

As in Figure A.1, there exists a feedback cascade system structure for a particle. If we assume

that there is another model for swarm information sharing, which implements the xG(k)

update. Then in the particle, the xG(k) can be viewed as an input that is independent with

the current particle state. The feedback loop uses the current state to update the xP (k). As

in Equation (A.13) and (A.14), the input-to-state stability of the input-update component

depends on f(x), which indicates that the input-to-state stability relies on the shape of the

fitness distribution. Assuming that the PSO parameters are set such that the position-update

component is input-to-state stable, there are three cases in analyzing the dynamics of a

particle.

• When only the xG(k) is constant

This happens usually when a “good” global best is found. Thus the swarm stops finding

better global bests. The input from the swarm can be modeled as a constant factor of

the system. However, the particle still finds new personal best positions and updates

the personal best. The system dynamics of the particle is determined by the feedback

state, which updates the personal best. In this process, f(xP ) < f(xG), otherwise, xG

will be updated. In this case, the two components form a feedback loop structure. The

small gain theorem [55] can be used. If the multiplication of the gain factors of two

components is less than 1, the system will still converge.

• When only the xP (k) is constant

This usually means that this particle is “stuck” in exploring a local region but some other

particles are continuously finding new better position. Thus the global best is being

updated. In this case, the feedback of the system does not impact the input-update

component and thus nor does it impact the position-update component. In this case

the system model can be simplified by ignoring the feedback. As a result, the system

falls into only a serial cascade system because there is no feedback for this particle.

If the input-update component is input-to-state stable, the serial connection of two

input-to-state stable component is still input-to-state stable (it can be shown that a

serial cascade of ISS components is also input-to-state stable [61]). Since this serial

cascade system is input-to-state stable, the new position will be bounded somewhere

around xG(k). This implies that the particle will converge toward the xG(k). If we

have f(xG) > f(xP ), in the assumption of the continuity in the fitness space, when the
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particle gets closer to the global best, there exits some region that f(x) > f(xP ). The

xP will start to change.

• When both the xG(k) and xP (k) are not constant

This usually means that both the particle and the swarm it belongs to keep on finding

better positions. Thus both the particle updates the personal best and the swarm

updates the global best. In this case, the input-to-state stability of the input-update

component is harder to guarantee. However, if the change of xG(k) and xP (k) is

bounded, the movement of the particle is still bounded by Corollary 1.

Generally, in the PSO, the dynamics of a particle switches in between these cases

before eventually reaching the stagnation. Understanding the dynamics of the particles before

stagnation supports the exploration and exploitation capability of particles in optimal search.

A.6 Conclusion

In this paper, we have decomposed the particle in the PSO algorithm into a feedback cascade

model, which consists of input-update and position-update components. We introduce the

input-to-state stability analysis to the position-update component. For an input-to-state

stable position-update component, if the input to this component is bounded, the state is

bounded; also if the input to the component converges, the state converges. The convergence

of a particle in PSO is determined by the output of the input-update component, which are

the personal best and global best. If they are in stagnation, the particle converges.

The analysis of a cascade structure used here can be applied to a wide range of PSO

variants. In the cases that the same position-update component but different input-update

components are used, the convergence and the boundary of the particles are determined by

whether the input-update component generates converging or bounded personal best and

global best. For variants that use a different position-update component, the ISS properties

would need to be verified.

The ISS property of the input-update component depends on the fitness distribution.

We provide several scenarios for the dynamics of the particle. We show that the optimal

search process switches among these scenarios and how the input-to-state stability analysis

should be applied into different scenarios.
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Appendix

ISS-Lyapunov function

Using the definitions of a K-function and a KL-function in Section A.3 we can define an

ISS-Lyapunov function as follows, an ISS-Lyapunov function V : Rn → R≥0 satisfies:

1. ∃α1, α2 ∈ K such that ∀ξ ∈ Rn , α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|).

2. ∃α3 ∈ K∞, σ ∈ K such that ∀ξ ∈ Rn,∀µ ∈ Rm,V (f(ξ, µ))− V (ξ) ≤ −α3(|ξ|) + σ(|µ|).

Proof of Theorem 1

Proof. Let P be an identity matrix. As |λmax(A(k))| < 1, we have ‖AT (k)PA(k)‖ ≤
‖P‖‖A(k)‖2 ≤ ‖P‖|λmax(A(k))|2 < ‖P‖. Because P is an identity matrix it is positive

definite, and thus AT (k)PA(k) is positive definite or positive semi-definite by definition. So

by positive definite ordering we have AT (k)PA(k) < P .

Let −Q(k) = AT (k)PA(k)−P . Since AT (k)PA(k) < P then −Q(k) < 0 furthermore

∃Q′∀k,Q(k) > Q′ > 0.

By the Lemma 3.5 in [55], if we can show that a proposed positive definite Lyapunov

function is an ISS-Lyapunov function, the system is input-to-state stable.

Define a Lyapunov function

V (X(k)) = XT (k)PX(k). (A.15)

We can have λmin(P )|X(k)|2 ≤ V (X(k)) ≤ λmax(P )|X(k)|2 and λmin(P ) = λmax(P ).

Let α1(ξ) = λminξ
2 and α2(ξ) = λmaxξ

2, we have V (x) satisfying condition 1 of the

ISS-Lyapunov function definition.

By applying Equation (A.4) to V (X(k + 1))− V (X(k)), we have

V (X(k + 1))− V (X(k))

=[XT (k)AT (k) + UT (k)BT (k)]P [A(k)X(k) +B(k)U(k)]

−XT (k)PX(k)

=XT (k)AT (k)PA(k)X(k) +XT (k)AT (k)PB(k)U(k)

+ UT (k)BT (k)PA(k)X(k) + UT (k)BT (k)PB(k)U(k)

−XT (k)PX(k)

(A.16)
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As P is identity matrix, it is symmetric, thus

[XT (k)AT (k)PB(k)U(k)]T = UT (k)BT (k)PA(k)X(k). (A.17)

V (X(k + 1)), V (X(k)) ∈ R, we have XT (k)AT (k)PB(k)U(k) and UT (k)BT (k)PA(k)X(k)

are both real value (like 1× 1 matrix). Thus,

XT (k)AT (k)PB(k)U(k) = UT (k)BT (k)PA(k)X(k). (A.18)

We then have
V (X(k + 1))− V (X(k))

=−XT (k)[AT (k)PA(k)− P ]X(k)

+ UT (k)BT (k)PB(k)U(k)

+ 2XT (k)AT (k)PB(k)U(k)

≤−XT (k)Q′X(k) + UT (k)BT (k)PB(k)U(k)

+ 2XT (k)AT (k)PB(k)U(k)

(A.19)

By applying matrix norm, we have

V (X(k + 1))− V (X(k))

≤− λmin(Q′)|X(k)|2 + |BT (k)PB(k)||U(k)|2

+ 2|AT (k)PB(k)||U(k)||X(k)|

=− 1

2
λmin(Q′)|X(k)|2 + |BT (k)PB(k)||U(k)|2

− 1

2
λmin(Q′)|X(k)|2 + 2|AT (k)PB(k)||U(k)||X(k)|

=− 1

2
λmin(Q′)|X(k)|2

+

(
2|AT (k)PB(k)|2

(λmin(Q′))2
+ |BT (k)PB(k)|

)
|U(k)|2

− 1

2
λmin(Q′)[|X(k)|2 − 4|AT (k)PB(k)|

λmin(Q′)
|X(k)||U(k)|

+
4|AT (k)PB(k)|2

(λmin(Q′))2
|U(k)|2]

(A.20)
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By completing the square, we have

V (X(k + 1))− V (X(k))

≤− 1

2
λmin(Q′)|X(k)|2

+

(
2|AT (k)PB(k)|2

(λmin(Q′))2
+ |BT (k)PB(k)|

)
|U(k)|2

− 1

2
λmin(Q′)

(
|X(k)| − 2|AT (k)PB(k)|

λmin(Q′)
|U(k)|

)2

≤− 1

2
λmin(Q′)|X(k)|2

+

(
2‖AT (k)PB(k)‖2

(λmin(Q′))2
+ ‖BT (k)PB(k)‖

)
|U(k)|2.

(A.21)

Because uP (k) ∈ [0, 1], there exist an A′ and B′ such that ‖A(k)‖ ≤ ‖A′‖ and

‖B(k)‖ ≤ ‖B′‖. We have ‖AT (k)PB(k)‖ ≤ ‖A′‖‖P‖‖B′‖ and ‖BT (k)PB(k)‖ ≤ ‖P‖‖B′‖2.

Since the identity matrix P has ||P || = 1:

V (X(k + 1))− V (X(k))

≤− 1

2
λmin(Q′)|X(k)|2 +

(
2‖A′‖2‖B′‖2

(λmin(Q′))2
+ ‖B′‖2

)
|U(k)|2.

(A.22)

Let

α3(ξ) =
1

2
λmin(Q′)ξ2,

and

σ(ξ) =

(
2‖A′‖2‖B′‖2

(λmin(Q′))2
+ ‖B′‖2

)
ξ2.

Thus we have V (X(k + 1))− V (X(k)) satisfying condition 2 of the ISS-Lyapunov function

definition and so (A.15) is an ISS-Lyapunov function. Using Jiang’s Lemma 3.5[55], the

position-update component of PSO (Equation (A.4)) is input-to-state stable.

Proof of Corollary 2

Proof. Let a = (1 + χ)− χφ. The eigenvalues of A(k) are

λ =
a±

√
a2 − 4χ

2
.

There can be two cases.

1. If a2 ≥ 4χ, the eigenvalues are real number. We have a ≥ 2
√
χ or a ≤ −2

√
χ.
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If a ≥ 2
√
χ, then |λmax| < 1 derives

0 <
a−

√
a2 − 4χ

2
≤ a+

√
a2 − 4χ

2
< 1.

It means that 2
√
χ ≤ a < 1 + χ.

If a ≤ 2
√
χ, then |λmax| < 1 derives

−1 <
a−

√
a2 − 4χ

2
≤ a+

√
a2 − 4χ

2
< 0.

It means that −(χ+ 1) < a ≤ −2
√
χ.

2. If a2 < 4χ, the eigenvalues are complex number. We have −2
√
χ < a < 2

√
χ.

|λmax| < 1 derives
a2

4
+
a2 − 4χ

4
< 1.

It means that −2
√

2(1 + χ) < a < 2
√

2(1 + χ). Because
√

2(1 + χ) > 2
√
χ, we have

−2
√
χ < a < 2

√
χ.

Combining these two cases, we have −(1 + χ) < a < 1 + χ. It equals to φ ∈
(

0, 2(1+χ)
χ

)
.

Proof of Corollary 3

Proof. The proof is similar with that in Subsection A.6. In this case, a = (1+χ)−φ
2
χ. Similarly,

we can have two cases and derive −(1 + χ) < a < 1 + χ. It equals to φ ∈
(

0, 4(1+χ)
χ

)
.
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